option.v 7.8 KB
Newer Older
1
Require Export algebra.cmra.
Ralf Jung's avatar
Ralf Jung committed
2
Require Import algebra.functor.
3 4

(* COFE *)
5 6 7
Section cofe.
Context {A : cofeT}.
Inductive option_dist : Dist (option A) :=
8 9
  | Some_dist n x y : x {n} y  Some x {n} Some y
  | None_dist n : None {n} None.
10
Existing Instance option_dist.
11
Program Definition option_chain
12 13 14
    (c : chain (option A)) (x : A) (H : c 1 = Some x) : chain A :=
  {| chain_car n := from_option x (c n) |}.
Next Obligation.
15 16 17
  intros c x ? n [|i] ?; [omega|]; simpl.
  destruct (c 1) eqn:?; simplify_equality'.
  by feed inversion (chain_cauchy c n (S i)).
18
Qed.
19
Instance option_compl : Compl (option A) := λ c,
20 21 22
  match Some_dec (c 1) with
  | inleft (exist x H) => Some (compl (option_chain c x H)) | inright _ => None
  end.
23
Definition option_cofe_mixin : CofeMixin (option A).
24 25 26 27 28 29 30 31 32 33 34 35
Proof.
  split.
  * intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
    intros Hxy; feed inversion (Hxy 1); subst; constructor; apply equiv_dist.
    by intros n; feed inversion (Hxy n).
  * intros n; split.
    + by intros [x|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
  * by inversion_clear 1; constructor; apply dist_S.
  * intros c n; unfold compl, option_compl.
    destruct (Some_dec (c 1)) as [[x Hx]|].
36 37
    { assert (is_Some (c (S n))) as [y Hy].
      { feed inversion (chain_cauchy c 0 (S n)); eauto with lia congruence. }
38
      rewrite Hy; constructor.
39 40 41
      by rewrite (conv_compl (option_chain c x Hx) n) /= Hy. }
    feed inversion (chain_cauchy c 0 (S n)); eauto with lia congruence.
    constructor.
42
Qed.
43 44
Canonical Structure optionC := CofeT option_cofe_mixin.
Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
45
Proof. by constructor. Qed.
46
Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49
Proof. inversion_clear 1; split; eauto. Qed.
Global Instance Some_dist_inj : Injective (dist n) (dist n) (@Some A).
Proof. by inversion_clear 1. Qed.
50
Global Instance None_timeless : Timeless (@None A).
51
Proof. inversion_clear 1; constructor. Qed.
52
Global Instance Some_timeless x : Timeless x  Timeless (Some x).
53
Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed.
54 55 56 57
End cofe.

Arguments optionC : clear implicits.

58
(* CMRA *)
59 60 61 62
Section cmra.
Context {A : cmraT}.

Instance option_validN : ValidN (option A) := λ n mx,
63
  match mx with Some x => {n} x | None => True end.
64
Global Instance option_empty : Empty (option A) := None.
65 66 67
Instance option_unit : Unit (option A) := fmap unit.
Instance option_op : Op (option A) := union_with (λ x y, Some (x  y)).
Instance option_minus : Minus (option A) :=
68
  difference_with (λ x y, Some (x  y)).
69
Lemma option_includedN n (mx my : option A) :
70
  mx {n} my  mx = None   x y, mx = Some x  my = Some y  x {n} y.
71 72
Proof.
  split.
73
  * intros [mz Hmz].
74 75 76
    destruct mx as [x|]; [right|by left].
    destruct my as [y|]; [exists x, y|destruct mz; inversion_clear Hmz].
    destruct mz as [z|]; inversion_clear Hmz; split_ands; auto;
77
      cofe_subst; eauto using cmra_includedN_l.
78
  * intros [->|(x&y&->&->&z&Hz)]; try (by exists my; destruct my; constructor).
79 80
    by exists (Some z); constructor.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83 84
Lemma None_includedN n (mx : option A) : None {n} mx.
Proof. rewrite option_includedN; auto. Qed.
Lemma Some_Some_includedN n (x y : A) : x {n} y  Some x {n} Some y.
Proof. rewrite option_includedN; eauto 10. Qed.
85
Definition Some_op a b : Some (a  b) = Some a  Some b := eq_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
86

87
Definition option_cmra_mixin  : CMRAMixin (option A).
88 89
Proof.
  split.
90 91 92 93
  * by intros n [x|]; destruct 1; constructor; cofe_subst.
  * by destruct 1; constructor; cofe_subst.
  * by destruct 1; rewrite /validN /option_validN //=; cofe_subst.
  * by destruct 1; inversion_clear 1; constructor; cofe_subst.
94 95 96 97 98
  * intros n [x|]; unfold validN, option_validN; eauto using cmra_validN_S.
  * intros [x|] [y|] [z|]; constructor; rewrite ?associative; auto.
  * intros [x|] [y|]; constructor; rewrite 1?commutative; auto.
  * by intros [x|]; constructor; rewrite cmra_unit_l.
  * by intros [x|]; constructor; rewrite cmra_unit_idempotent.
99 100
  * intros n mx my; rewrite !option_includedN;intros [->|(x&y&->&->&?)]; auto.
    right; exists (unit x), (unit y); eauto using cmra_unit_preservingN.
101 102
  * intros n [x|] [y|]; rewrite /validN /option_validN /=;
      eauto using cmra_validN_op_l.
103
  * intros n mx my; rewrite option_includedN.
104
    intros [->|(x&y&->&->&?)]; [by destruct my|].
105 106
    by constructor; apply cmra_op_minus.
Qed.
107
Definition option_cmra_extend_mixin : CMRAExtendMixin (option A).
108
Proof.
109
  intros n mx my1 my2.
110 111 112 113 114 115 116 117 118
  destruct mx as [x|], my1 as [y1|], my2 as [y2|]; intros Hx Hx';
    try (by exfalso; inversion Hx'; auto).
  * destruct (cmra_extend_op n x y1 y2) as ([z1 z2]&?&?&?); auto.
    { by inversion_clear Hx'. }
    by exists (Some z1, Some z2); repeat constructor.
  * by exists (Some x,None); inversion Hx'; repeat constructor.
  * by exists (None,Some x); inversion Hx'; repeat constructor.
  * exists (None,None); repeat constructor.
Qed.
119 120
Canonical Structure optionRA :=
  CMRAT option_cofe_mixin option_cmra_mixin option_cmra_extend_mixin.
121 122
Global Instance option_cmra_identity : CMRAIdentity optionRA.
Proof. split. done. by intros []. by inversion_clear 1. Qed.
123

124 125 126 127
Lemma op_is_Some mx my : is_Some (mx  my)  is_Some mx  is_Some my.
Proof.
  destruct mx, my; rewrite /op /option_op /= -!not_eq_None_Some; naive_solver.
Qed.
128
Lemma option_op_positive_dist_l n mx my : mx  my {n} None  mx {n} None.
129
Proof. by destruct mx, my; inversion_clear 1. Qed.
130
Lemma option_op_positive_dist_r n mx my : mx  my {n} None  my {n} None.
131 132 133
Proof. by destruct mx, my; inversion_clear 1. Qed.

Lemma option_updateP (P : A  Prop) (Q : option A  Prop) x :
134
  x ~~>: P  ( y, P y  Q (Some y))  Some x ~~>: Q.
135 136 137 138 139 140
Proof.
  intros Hx Hy [y|] n ?.
  { destruct (Hx y n) as (y'&?&?); auto. exists (Some y'); auto. }
  destruct (Hx (unit x) n) as (y'&?&?); rewrite ?cmra_unit_r; auto.
  by exists (Some y'); split; [auto|apply cmra_validN_op_l with (unit x)].
Qed.
141
Lemma option_updateP' (P : A  Prop) x :
142
  x ~~>: P  Some x ~~>: λ y, default False y P.
143
Proof. eauto using option_updateP. Qed.
144
Lemma option_update x y : x ~~> y  Some x ~~> Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
Proof.
146
  rewrite !cmra_update_updateP; eauto using option_updateP with congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
Qed.
148 149 150 151 152
Lemma option_update_None `{Empty A, !CMRAIdentity A} :  ~~> Some .
Proof.
  intros [x|] n ?; rewrite /op /cmra_op /validN /cmra_validN /= ?left_id;
    auto using cmra_empty_valid.
Qed.
153 154 155
End cmra.
Arguments optionRA : clear implicits.

156 157 158 159
(** Functor *)
Instance option_fmap_ne {A B : cofeT} (f : A  B) n:
  Proper (dist n ==> dist n) f  Proper (dist n==>dist n) (fmap (M:=option) f).
Proof. by intros Hf; destruct 1; constructor; apply Hf. Qed.
160 161
Instance option_fmap_cmra_monotone {A B : cmraT} (f: A  B) `{!CMRAMonotone f} :
  CMRAMonotone (fmap f : option A  option B).
162 163 164
Proof.
  split.
  * intros n mx my; rewrite !option_includedN.
165
    intros [->|(x&y&->&->&?)]; simpl; eauto 10 using @includedN_preserving.
166 167
  * by intros n [x|] ?; rewrite /cmra_validN /=; try apply validN_preserving.
Qed.
168 169 170 171
Definition optionC_map {A B} (f : A -n> B) : optionC A -n> optionC B :=
  CofeMor (fmap f : optionC A  optionC B).
Instance optionC_map_ne A B n : Proper (dist n ==> dist n) (@optionC_map A B).
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

Program Definition optionF (Σ : iFunctor) : iFunctor := {|
  ifunctor_car := optionRA  Σ; ifunctor_map A B := optionC_map  ifunctor_map Σ
|}.
Next Obligation.
  by intros Σ A B n f g Hfg; apply optionC_map_ne, ifunctor_map_ne.
Qed.
Next Obligation.
  intros Σ A x. rewrite /= -{2}(option_fmap_id x).
  apply option_fmap_setoid_ext=>y; apply ifunctor_map_id.
Qed.
Next Obligation.
  intros Σ A B C f g x. rewrite /= -option_fmap_compose.
  apply option_fmap_setoid_ext=>y; apply ifunctor_map_compose.
Qed.