derived.tex 21.3 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Derived proof rules and other constructions}
2

Ralf Jung's avatar
Ralf Jung committed
3 4 5 6 7
We will below abuse notation, using the \emph{term} meta-variables like $\val$ to range over (bound) \emph{variables} of the corresponding type..
We omit type annotations in binders and equality, when the type is clear from context.
We assume that the signature $\Sig$ embeds all the meta-level concepts we use, and their properties, into the logic.
(The Coq formalization is a \emph{shallow embedding} of the logic, so we have direct access to all meta-level notions within the logic anyways.)

8 9
\subsection{Base logic}

Ralf Jung's avatar
Ralf Jung committed
10 11 12 13 14 15
We collect here some important and frequently used derived proof rules.
\begin{mathparpagebreakable}
  \infer{}
  {\prop \Ra \propB \proves \prop \wand \propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
16
  {\prop * \Exists\var.\propB \provesIff \Exists\var. \prop * \propB}
Ralf Jung's avatar
Ralf Jung committed
17 18 19 20 21

  \infer{}
  {\prop * \Exists\var.\propB \proves \Exists\var. \prop * \propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
22
  {\always(\prop*\propB) \provesIff \always\prop * \always\propB}
Ralf Jung's avatar
Ralf Jung committed
23 24 25 26 27 28 29 30

  \infer{}
  {\always(\prop \Ra \propB) \proves \always\prop \Ra \always\propB}

  \infer{}
  {\always(\prop \wand \propB) \proves \always\prop \wand \always\propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
31
  {\always(\prop \wand \propB) \provesIff \always(\prop \Ra \propB)}
Ralf Jung's avatar
Ralf Jung committed
32 33 34 35 36 37 38 39 40 41 42

  \infer{}
  {\later(\prop \Ra \propB) \proves \later\prop \Ra \later\propB}

  \infer{}
  {\later(\prop \wand \propB) \proves \later\prop \wand \later\propB}

  \infer
  {\pfctx, \later\prop \proves \prop}
  {\pfctx \proves \prop}
\end{mathparpagebreakable}
43

44 45 46 47 48 49
\paragraph{Persistent assertions.}
\begin{defn}
  An assertion $\prop$ is \emph{persistent} if $\prop \proves \always\prop$.
\end{defn}

Of course, $\always\prop$ is persistent for any $\prop$.
Ralf Jung's avatar
Ralf Jung committed
50
Furthermore, by the proof rules given above, $t = t'$ as well as $\ownGGhost{\mcore\melt}$ and $\knowInv\iname\prop$ are persistent.
51 52 53 54
Persistence is preserved by conjunction, disjunction, separating conjunction as well as universal and existential quantification.

In our proofs, we will implicitly add and remove $\always$ from persistent assertions as necessary, and generally treat them like normal, non-linear assumptions.

Ralf Jung's avatar
Ralf Jung committed
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
\paragraph{Timeless assertions.}

We can show that the following additional closure properties hold for timeless assertions:

\begin{mathparpagebreakable}
  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \land \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \lor \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop * \propB}}

  \infer
  {\vctx \proves \timeless{\prop}}
  {\vctx \proves \timeless{\always\prop}}
\end{mathparpagebreakable}


78 79
\subsection{Program logic}

Ralf Jung's avatar
Ralf Jung committed
80
Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive view shifts, respectively:
81
\[
82
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \wpre{\expr}[\mask]{\lambda\Ret\val.\propB})}
83 84 85 86 87 88
\qquad\qquad
\begin{aligned}
\prop \vs[\mask_1][\mask_2] \propB &\eqdef \always{(\prop \Ra \pvs[\mask_1][\mask_2] {\propB})} \\
\prop \vsE[\mask_1][\mask_2] \propB &\eqdef \prop \vs[\mask_1][\mask_2] \propB \land \propB \vs[\mask2][\mask_1] \prop
\end{aligned}
\]
Ralf Jung's avatar
Ralf Jung committed
89
We write just one mask for a view shift when $\mask_1 = \mask_2$.
90 91
Clearly, all of these assertions are persistent.
The convention for omitted masks is similar to the base logic:
Ralf Jung's avatar
Ralf Jung committed
92 93 94
An omitted $\mask$ is $\top$ for Hoare triples and $\emptyset$ for view shifts.


Ralf Jung's avatar
Ralf Jung committed
95
\paragraph{View shifts.}
96
The following rules can be derived for view shifts.
Ralf Jung's avatar
Ralf Jung committed
97

98 99
\begin{mathparpagebreakable}
\inferH{vs-update}
Ralf Jung's avatar
Ralf Jung committed
100 101 102
  {\melt \mupd \meltsB}
  {\ownGGhost{\melt} \vs \exists \meltB \in \meltsB.\; \ownGGhost{\meltB}}
\and
103
\inferH{vs-trans}
Ralf Jung's avatar
Ralf Jung committed
104 105 106
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC \and \mask_2 \subseteq \mask_1 \cup \mask_3}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
107
\inferH{vs-imp}
Ralf Jung's avatar
Ralf Jung committed
108 109 110
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
111
\inferH{vs-mask-frame}
Ralf Jung's avatar
Ralf Jung committed
112
  {\prop \vs[\mask_1][\mask_2] \propB}
113
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
Ralf Jung's avatar
Ralf Jung committed
114
\and
115 116 117 118 119
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
Ralf Jung's avatar
Ralf Jung committed
120 121 122
  {\timeless{\prop}}
  {\later \prop \vs \prop}
\and
123 124 125 126 127
\inferH{vs-allocI}
  {\infinite(\mask)}
  {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
\and
\axiomH{vs-openI}
Ralf Jung's avatar
Ralf Jung committed
128 129
  {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
\and
130
\axiomH{vs-closeI}
Ralf Jung's avatar
Ralf Jung committed
131 132
  {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }

133
\inferHB{vs-disj}
Ralf Jung's avatar
Ralf Jung committed
134 135 136
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
137
\inferHB{vs-exist}
Ralf Jung's avatar
Ralf Jung committed
138 139 140
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
141
\inferHB{vs-box}
Ralf Jung's avatar
Ralf Jung committed
142
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
Ralf Jung's avatar
Ralf Jung committed
143 144
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
145
\inferH{vs-false}
Ralf Jung's avatar
Ralf Jung committed
146 147
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
148
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
149 150


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
\paragraph{Hoare triples.}
The following rules can be derived for Hoare triples.

\begin{mathparpagebreakable}
\inferH{Ht-ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Ht-bind}
  {\text{$\lctx$ is a context} \and \hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{\lctx(\val)}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{\lctx(\expr)}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Ht-csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferH{Ht-mask-weaken}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask \uplus \mask']}
\\\\
\inferH{Ht-frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
\inferH{Ht-frame-step}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \toval(\expr) = \bot}
  {\hoare{\prop * \later\propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
\inferH{Ht-atomic}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
Ralf Jung's avatar
Ralf Jung committed
187
  }
188
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
Ralf Jung's avatar
Ralf Jung committed
189
\and
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
\inferHB{Ht-disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{Ht-exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{Ht-box}
  {\always\propB \proves \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferH{Ht-false}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
206

Ralf Jung's avatar
Ralf Jung committed
207 208 209 210 211
\paragraph{Lifting of operational semantics.}
We can derive some specialized forms of the lifting axioms for the operational semantics, as well as some forms that involve view shifts and Hoare triples.

\ralf{Add these.}

Ralf Jung's avatar
Ralf Jung committed
212
\subsection{Global functor and ghost ownership}
Ralf Jung's avatar
Ralf Jung committed
213 214

Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from a family of functors $(F_i)_{i \in I}$ for some finite $I$ by picking
215 216
\[ F(\cofe) \eqdef \prod_{i \in I} \textlog{GhName} \fpfn F_i(\cofe) \]
We don't care so much about what concretely $\textlog{GhName}$ is, as long as it is countable and infinite.
Ralf Jung's avatar
Ralf Jung committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
With $M_i \eqdef F_i(\iProp)$, we write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownGGhost{[i \mapsto [\gname \mapsto \melt]]}$.
In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the ``ghost location'' $\gname$ is allocated and we own piece $\melt$.

From~\ruleref{pvs-update}, \ruleref{vs-update} and the frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfnm}, we have the following derived rules.
\begin{mathparpagebreakable}
  \inferH{NewGhostStrong}{\text{$G$ infinite}}
  {  \TRUE \vs \Exists\gname\in G. \ownGhost\gname{\melt : M_i}
  }
  \and
  \axiomH{NewGhost}{
    \TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i}
  }
  \and
  \inferH{GhostUpd}
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}
  \and
  \axiomH{GhostEq}
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}}

  \axiomH{GhostVal}
    {\ownGhost\gname{\melt : M_i} \Ra \mval_{M_i}(\melt)}

  \inferH{GhostTimeless}
    {\text{$\melt$ is a discrete COFE element}}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathparpagebreakable}
244

Ralf Jung's avatar
Ralf Jung committed
245
\subsection{Invariant identifier namespaces}
246 247 248 249 250 251 252

Let $\namesp \ni \textlog{InvNamesp} \eqdef \textlog{list}(\textlog{InvName})$ be the type of \emph{namespaces} for invariant names.
Notice that there is an injection $\textlog{namesp\_inj}: \textlog{InvNamesp} \ra \textlog{InvName}$.
Whenever needed (in particular, for masks at view shifts and Hoare triples), we coerce $\namesp$ to its suffix-closure: \[\namecl\namesp \eqdef \setComp{\iname}{\Exists \namesp'. \iname = \textlog{namesp\_inj}(\namesp' \dplus \namesp)}\]
We use the notation $\namesp.\iname$ for the namespace $[\iname] \dplus \namesp$.

We define the inclusion relation on namespaces as $\namesp_1 \sqsubseteq \namesp_2 \Lra \Exists \namesp_3. \namesp_2 = \namesp_3 \dplus \namesp_1$, \ie $\namesp_1$ is a suffix of $\namesp_2$.
Ralf Jung's avatar
Ralf Jung committed
253
We have that $\namesp_1 \sqsubseteq \namesp_2 \Ra \namecl{\namesp_2} \subseteq \namecl{\namesp_1}$.
254 255

Similarly, we define $\namesp_1 \sep \namesp_2 \eqdef   \Exists \namesp_1', \namesp_2'. \namesp_1' \sqsubseteq \namesp_1 \land \namesp_2' \sqsubseteq \namesp_2 \land |\namesp_1'| = |\namesp_2'| \land \namesp_1' \neq \namesp_2'$, \ie there exists a distinguishing suffix.
Ralf Jung's avatar
Ralf Jung committed
256
We have that $\namesp_1 \sep \namesp_2 \Ra \namecl{\namesp_2} \sep \namecl{\namesp_1}$, and furthermore $\iname_1 \neq \iname_2 \Ra \namesp.\iname_1 \sep \namesp.\iname_2$.
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
We will overload the usual Iris notation for invariant assertions in the following:
\[ \knowInv\namesp\prop \eqdef \Exists \iname \in \namecl\namesp. \knowInv\iname{\prop} \]
We can now derive the following rules for this derived form of the invariant assertion:
\begin{mathpar}
  \axiom{\knowInv\namesp\prop \proves \always\knowInv\namesp\prop}

  \axiom{\later\prop \proves \pvs[\namesp] \knowInv\namesp\prop}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \wpre\expr[\mask \setminus \namesp]{\Ret\val.\later\prop * \propB}}
  {\pfctx \proves \wpre\expr[\mask]{\Ret\val.\propB}}

  \infer{\namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \pvs[\mask \setminus \namesp]{\later\prop * \propB}}
  {\pfctx \proves \pvs[\mask]{\propB}}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \hoare{\later\prop*\propB}\expr{\Ret\val.\later\prop*\propC}[\mask \setminus \namesp]}
  {\knowInv\namesp\prop \proves \hoare\propB\expr{\Ret\val.\propC}[\mask]}

  \infer{\namesp \subseteq \mask \and
    \later\prop*\propB \vs[\mask \setminus \namesp] \later\prop*\propC}
  {\knowInv\namesp\prop \proves \propB \vs[\mask] \propC}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
% \subsection{STSs with interpretation}\label{sec:stsinterp}

% Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

% An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
% \begin{align*}
%   \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
%   \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
% \end{align*}

% We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
% \begin{mathpar}
%  \inferH{NewSts}
%   {\infinite(\mask)}
%   {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
%  \and
%  \axiomH{StsOpen}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
%  \and
%  \axiomH{StsClose}
%   {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
% \end{mathpar}
% \begin{proof}
% \ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

% \ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

% \ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
% \end{proof}
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
% Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
% \begin{mathpar}
%  \inferH{Sts}
%   {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
%    \and \physatomic{\expr}}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSSts}
%   {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
%  We have to show
%  \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
%  where $\val$, $s'$, $T'$ are free in $Q$.
331
 
332 333
%  First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
%  \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]
334

335 336 337
%  Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
%  It remains to show:
%  \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
338
 
339 340
%  Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
%  \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
341
 
342
%  This holds by our premise.
Ralf Jung's avatar
Ralf Jung committed
343
% \end{proof}
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
% % \begin{proof}[Proof of \ruleref{VSSts}]
% % This is similar to above, so we only give the proof in short notation:

% % \hproof{%
% % 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% % 	\pline[\mask_1 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s_0, T)} * P
% % 	} \\
% % 	\pline[\mask_1]{%
% % 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% % 	} \qquad by \ruleref{StsOpen} \\
% % 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% % 	\pline[\mask_2]{%
% % 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% % 	} \qquad by premiss \\
% % 	Context: $(s, T) \ststrans (s', T')$ \\
% % 	\pline[\mask_2 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s', T')} * Q(s', T')
% % 	} \qquad by \ruleref{StsClose}
% % }
% % \end{proof}

% \subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

% Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

% Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
% Now define
% \begin{align*}
%   \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
%   \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
% \end{align*}

% The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
% \begin{mathpar}
%  \inferH{NewAuth}
%   {\infinite(\mask) \and M~\textlog{cancellative}}
%   {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
%  \and
%  \axiomH{AuthOpen}
%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_f.\; \later\pred_\bot(\melt \mtimes \melt_f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_f, \authfrag a:\auth{M}}}
%  \and
%  \axiomH{AuthClose}
%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_f) * \ownGhost{\gname}{\authfull a \mtimes \melt_f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
% \end{mathpar}

% These view shifts in turn can be used to prove variants of the invariant rules:
% \begin{mathpar}
%  \inferH{Auth}
%   {\forall \melt_f.\; \hoare{\later\pred_\bot(a \mtimes \melt_f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_f) * Q}[\mask]
%    \and \physatomic{\expr}}
%   {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSAuth}
%   {\forall \melt_f.\; \later\pred_\bot(a \mtimes \melt_f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_f) * Q(\meltB)}
%   {\Auth(M, \pred, \gname, \iname) \vdash
%    \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
%    \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
% \end{mathpar}


% \subsection{Ghost heap}
% \label{sec:ghostheap}%
Ralf Jung's avatar
Ralf Jung committed
408
% FIXME use the finmap provided by the global ghost ownership, instead of adding our own
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
% We define a simple ghost heap with fractional permissions.
% Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
% In such cases we use these ghost heaps.

% We seek to implement the following interface:
% \newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
% \begin{align*}
%  \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
%   & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
%   &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
%   & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
%   & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
% \end{align*}
% We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
% Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

% To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\textdom{Val})$ and define
% \[
% 	x \fgmapsto[q] v \eqdef
% 	  \begin{cases}
%     	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
%     	\FALSE & \text{otherwise}
%     \end{cases}
% \]
% The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
% The first implication is immediate from the definition.
% The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.
436

Ralf Jung's avatar
Ralf Jung committed
437 438 439 440 441

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: