ofe.v 39.3 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21 22

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
23
  | _ => progress simplify_eq/=
24 25 26 27
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
28
  repeat match goal with
29
  | _ => progress simplify_eq/=
30 31
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
32
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34
Record OfeMixin A `{Equiv A, Dist A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40
}.

(** Bundeled version *)
41 42 43 44 45
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
46
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
47
}.
48 49 50 51 52 53 54 55 56
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
57 58

(** Lifting properties from the mixin *)
59 60
Section ofe_mixin.
  Context {A : ofeT}.
61
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
64
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
65
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67 68
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
69

70 71
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

72
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
73
(* TODO: On paper, We called these "discrete elements". I think that makes
74
   more sense. *)
75 76
Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.
77 78 79 80 81 82 83 84 85 86
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

87 88 89 90 91
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

92 93 94 95 96 97
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
98

Robbert Krebbers's avatar
Robbert Krebbers committed
99 100
(** General properties *)
Section cofe.
101
  Context {A : ofeT}.
102
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
106 107
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
108
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
  Qed.
110
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
113 114
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
115
  Qed.
116
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
117
  Proof.
118
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
122
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  Proof. induction 2; eauto using dist_S. Qed.
124 125
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
126
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
129
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132 133
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
134
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
135
  Qed.
136

137
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
138 139 140 141
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
142 143
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
144
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
145
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147
End cofe.

148
(** Contractive functions *)
149 150 151 152 153 154 155 156
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
157

158
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
159 160
Proof. by intros n y1 y2. Qed.

161 162 163 164 165
Section contractive.
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
166
  Proof. by apply (_ : Contractive f). Qed.
167
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
168
  Proof. intros. by apply (_ : Contractive f). Qed.
169 170 171 172 173 174 175

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

176 177 178 179 180 181 182
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
183 184
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
185 186 187 188 189 190
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
191

Robbert Krebbers's avatar
Robbert Krebbers committed
192
(** Fixpoint *)
193
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
194
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
Next Obligation.
196
  intros A ? f ? n.
197
  induction n as [|n IH]=> -[|i] //= ?; try omega.
198 199
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Qed.
201

202
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
203
  `{!Contractive f} : A := compl (fixpoint_chain f).
204
Definition fixpoint_aux : { x | x = @fixpoint_def }. by eexists. Qed.
205
Definition fixpoint {A AC AiH} f {Hf} := proj1_sig fixpoint_aux A AC AiH f Hf.
206
Definition fixpoint_eq : @fixpoint = @fixpoint_def := proj2_sig fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208

Section fixpoint.
209
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
210

211
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
212
  Proof.
213 214
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
215
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  Qed.
217 218 219

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
220 221 222
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
223 224
  Qed.

225
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
226
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
  Proof.
228
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
229
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
230 231
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  Qed.
233 234
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
236 237

  Lemma fixpoint_ind (P : A  Prop) :
238
    Proper (() ==> impl) P 
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255
End fixpoint.

256 257
(** Mutual fixpoints *)
Section fixpoint2.
258 259
  Local Unset Default Proof Using.

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
End fixpoint2.

Section fixpoint2_ne.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
End fixpoint2_ne.

337
(** Function space *)
338
(* We make [ofe_fun] a definition so that we can register it as a canonical
339
structure. *)
340
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
341

342 343 344 345 346
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
347 348 349 350 351 352 353 354 355 356
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
357
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
358

359 360 361 362 363 364 365 366 367
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
368
Notation "A -c> B" :=
369 370
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
371 372
  Inhabited (A -c> B) := populate (λ _, inhabitant).

373
(** Non-expansive function space *)
374 375 376
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378
}.
Arguments CofeMor {_ _} _ {_}.
379 380
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
381

382 383 384 385
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

386 387 388 389 390 391 392
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
393 394
  Proof.
    split.
395
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
396
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
397
    - intros n; split.
398 399
      + by intros f x.
      + by intros f g ? x.
400
      + by intros f g h ?? x; trans (g x).
401
    - by intros n f g ? x; apply dist_S.
402
  Qed.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
420

421 422
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
423
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
424 425 426
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
427
  Proof. done. Qed.
428
End ofe_mor.
429

430
Arguments ofe_morC : clear implicits.
431
Notation "A -n> B" :=
432 433
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
434
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
435

436
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
437 438
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
439
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
440
Instance: Params (@cconst) 2.
441

Robbert Krebbers's avatar
Robbert Krebbers committed
442 443 444 445 446
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
447
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
448
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
449

450
(* Function space maps *)
451
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
452
  (h : A -n> B) : A' -n> B' := g  h  f.
453 454
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
455
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
456

457 458 459 460
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
461
Proof.
462
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
463
  by repeat apply ccompose_ne.
464 465
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
466
(** unit *)
467 468
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
469
  Definition unit_ofe_mixin : OfeMixin unit.
470
  Proof. by repeat split; try exists 0. Qed.
471
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
472

473 474
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
477
  Proof. done. Qed.
478
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
479 480

(** Product *)
481
Section product.
482
  Context {A B : ofeT}.
483 484 485 486 487 488

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
489
  Definition prod_ofe_mixin : OfeMixin (A * B).
490 491
  Proof.
    split.
492
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
493
      rewrite !equiv_dist; naive_solver.
494 495
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
496
  Qed.
497 498 499 500 501 502 503 504 505
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

506 507 508
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
509 510
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
511 512 513 514 515
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

516
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
517 518 519 520 521 522 523 524 525
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

526 527
(** Functors *)
Structure cFunctor := CFunctor {
528
  cFunctor_car : ofeT  ofeT  ofeT;
529 530
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
531 532
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
533
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
534 535 536 537 538
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
539
Existing Instance cFunctor_ne.
540 541
Instance: Params (@cFunctor_map) 5.

542 543 544
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

545 546 547
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

548
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
549 550
Coercion cFunctor_diag : cFunctor >-> Funclass.

551
Program Definition constCF (B : ofeT) : cFunctor :=
552 553 554
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

555
Instance constCF_contractive B : cFunctorContractive (constCF B).
556
Proof. rewrite /cFunctorContractive; apply _. Qed.
557 558 559 560 561

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.

562 563 564 565 566
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
567 568 569
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
570 571 572 573 574 575
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.

576 577 578 579 580 581 582 583
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

584
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
585 586 587
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

588
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
589
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
590 591
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
592 593
Proof. intros f f' Hf g x. apply Hf. Qed.

594 595 596
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
597 598
|}.
Next Obligation.
599
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
600 601 602 603 604 605 606
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.

607 608
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
609 610
Proof.
  intros ?? A1 A2 B1 B2 n ???;
611
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
612 613
Qed.

614
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
615
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
616
  cFunctor_map A1 A2 B1 B2 fg :=
617
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
618
|}.
619 620
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
621
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
622
Qed.
623
Next Obligation.
624 625
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
626 627
Qed.
Next Obligation.
628 629
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
630 631
Qed.

632
Instance ofe_morCF_contractive F1 F2 :
633
  cFunctorContractive F1  cFunctorContractive F2 
634
  cFunctorContractive (ofe_morCF F1 F2).
635 636
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
637
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
638 639
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
640 641
(** Sum *)
Section sum.
642
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644 645 646 647 648 649

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

650 651 652 653 654 655 656 657 658 659 660 661
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
662 663
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
664
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
665 666 667
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

668
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
669 670 671 672
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
673 674 675 676 677 678 679
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683 684 685 686 687 688 689 690 691 692
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

693
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

727 728 729
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
730

731
  Instance discrete_dist : Dist A := λ n x y, x  y.
732
  Definition discrete_ofe_mixin : OfeMixin A.
733 734
  Proof.
    split.
735 736 737
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
738
  Qed.
739

740 741 742 743 744
  Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
    { compl c := c 0 }.
  Next Obligation.
    intros n c. rewrite /compl /=;
    symmetry; apply (chain_cauchy c 0 n). omega.
745 746 747
  Qed.
End discrete_cofe.

748 749
Notation discreteC A := (OfeT A discrete_ofe_mixin).
Notation leibnizC A := (OfeT A (@discrete_ofe_mixin _ equivL _)).
750 751 752 753 754 755

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
756

757
Canonical Structure boolC := leibnizC bool.
758 759 760 761
Canonical Structure natC := leibnizC nat.
Canonical Structure positiveC := leibnizC positive.
Canonical Structure NC := leibnizC N.
Canonical Structure ZC := leibnizC Z.
762

763 764
(* Option *)
Section option.
765
  Context {A : ofeT}.
766

767
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
768
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
769
  Proof. done. Qed.
770

771
  Definition option_ofe_mixin : OfeMixin (option A).
772 773 774 775 776
  Proof.
    split.
    - intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
      intros Hxy; destruct (Hxy 0); constructor; apply equiv_dist.
      by intros n; feed inversion (Hxy n).
777
    - apply _.
778 779
    - destruct 1; constructor; by apply dist_S.
  Qed.
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
  Canonical Structure optionC := OfeT (option A) option_ofe_mixin.

  Program Definition option_chain (c : chain optionC) (x : A) : chain A :=
    {| chain_car n := from_option id x (c n) |}.
  Next Obligation. intros c x n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
  Definition option_compl `{Cofe A} : Compl optionC := λ c,
    match c 0 with Some x => Some (compl (option_chain c x)) | None => None end.
  Global Program Instance option_cofe `{Cofe A} : Cofe optionC :=
    { compl := option_compl }.
  Next Obligation.
    intros ? n c; rewrite /compl /option_compl.
    feed inversion (chain_cauchy c 0 n); auto with lia; [].
    constructor. rewrite (conv_compl n (option_chain c _)) /=.
    destruct (c n); naive_solver.
  Qed.

796 797 798 799 800 801 802 803 804
  Global Instance option_discrete : Discrete A  Discrete optionC.
  Proof. destruct 2; constructor; by apply (timeless _). Qed.

  Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
  Proof. by constructor. Qed.
  Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
  Proof. destruct 1; split; eauto. Qed.
  Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A).
  Proof. by inversion_clear 1. Qed.
805 806 807
  Global Instance from_option_ne {B} (R : relation B) (f : A  B) n :
    Proper (dist n ==> R) f  Proper (R ==> dist n ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
808 809 810 811 812

  Global Instance None_timeless : Timeless (@None A).
  Proof. inversion_clear 1; constructor. Qed.
  Global Instance Some_timeless x : Timeless x  Timeless (Some x).
  Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed.
813 814 815 816 817 818 819 820 821 822 823 824 825

  Lemma dist_None n mx : mx {n} None  mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma dist_Some_inv_l n mx my x :
    mx {n} my  mx = Some x   y, my = Some y  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_r n mx my y :
    mx {n} my  my = Some y   x, mx = Some x  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_l' n my x : Some x {n} my   x', Some x' = my  x {n} x'.
  Proof. intros ?%(dist_Some_inv_l _ _ _ x); naive_solver. Qed.
  Lemma dist_Some_inv_r' n mx y : mx {n} Some y   y', mx = Some y'  y {n} y'.
  Proof. intros ?%(dist_Some_inv_r _ _ _ y); naive_solver. Qed.
826 827
End option.

828
Typeclasses Opaque option_dist.
829 830
Arguments optionC : clear implicits.

831
Instance option_fmap_ne {A B : ofeT} n:
832 833
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap option _ A B).
Proof. intros f f' Hf ?? []; constructor; auto. Qed.
834 835 836 837 838 839 840 841 842 843 844 845 846 847
Definition optionC_map {A B} (f : A -n> B) : optionC A -n> optionC B :=
  CofeMor (fmap f : optionC A  optionC B).
Instance optionC_map_ne A B n : Proper (dist n ==> dist n) (@optionC_map A B).
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.

Program Definition optionCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := optionC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := optionC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(option_fmap_id x).
848
  apply option_fmap_equiv_ext=>y; apply cFunctor_id.
849 850 851
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -option_fmap_compose.
852
  apply option_fmap_equiv_ext=>y; apply cFunctor_compose.
853 854 855 856 857 858 859 860
Qed.

Instance optionCF_contractive F :
  cFunctorContractive F  cFunctorContractive (optionCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_contractive.
Qed.

861
(** Later *)
862
Inductive later (A : Type) : Type := Next { later_car : A }.
863
Add Printing Constructor later.
864
Arguments Next {_} _.
865
Arguments later_car {_} _.
866

867
Section later.
868
  Context {A : ofeT}.
869 870
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
871
    dist_later n (later_car x) (later_car y).
872
  Definition later_ofe_mixin : OfeMixin (later A).
873 874
  Proof.
    split.
875 876
    - intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
877
    - split; rewrite /dist /later_dist.
878 879
      + by intros [x].
      + by intros [x] [y].
880
      + by intros [x] [y] [z] ??; trans y.
881
    - intros [|n] [x] [y] ?; [done|]; rewrite /dist /later_dist; by apply dist_S.
882
  Qed.
883 884 885 886 887
  Canonical Structure laterC : ofeT := OfeT (later A) later_ofe_mixin.

  Program Definition later_chain (c : chain laterC) : chain A :=
    {| chain_car n := later_car (c (S n)) |}.
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
888
  Global Program Instance later_cofe `{Cofe A} : Cofe laterC :=
889 890 891 892 893
    { compl c := Next (compl (later_chain c)) }.
  Next Obligation.
    intros ? [|n] c; [done|by apply (conv_compl n (later_chain c))].
  Qed.

894
  Global Instance Next_contractive : Contractive (@Next A).
895
  Proof. by intros [|n] x y. Qed.
896
  Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Robbert Krebbers's avatar
Robbert Krebbers committed
897
  Proof. by intros x y. Qed.
898

899 900 901
  Instance later_car_anti_contractive n :
    Proper (dist n ==> dist_later n) later_car.
  Proof. move=> [x] [y] /= Hxy. done. Qed.
902

903
  (* f is contractive iff it can factor into `Next` and a non-expansive function. *)
904 905 906 907 908 909 910 911
  Lemma contractive_alt {B : ofeT} (f : A  B) :
    Contractive f   g : later A  B,
      ( n, Proper (dist n ==> dist n) g)  ( x, f x  g (Next x)).
  Proof.
    split.
    - intros Hf. exists (f  later_car); split=> // n x y ?. by f_equiv.
    - intros (g&Hg&Hf) n x y Hxy. rewrite !Hf. by apply Hg.
  Qed.
912
End later.
913 914 915 916

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
917
  Next (f (later_car x)).
918
Instance later_map_ne {A B : ofeT} (f : A  B) n :
919 920 921 922 923 924 925 926
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
927
Lemma later_map_ext {A B : ofeT} (f g : A  B) x :
928 929
  ( x, f x  g x)  later_map f x  later_map g x.
Proof. destruct x; intros Hf; apply Hf. Qed.
930 931
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
932
Instance laterC_map_contractive (A B : ofeT) : Contractive (@laterC_map A B).
933
Proof. intros [|n] f g Hf n'; [done|]; apply Hf; lia. Qed.
934

935 936 937
Program Definition laterCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := laterC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := laterC_map (cFunctor_map F fg)
938
|}.
939 940 941 942
Next Obligation.
  intros F A1 A2 B1 B2 n fg fg' ?.
  by apply (contractive_ne laterC_map), cFunctor_ne.
Qed.
943
Next Obligation.
944 945 946 947 948 949 950 951
  intros F A B x; simpl. rewrite -{2}(later_map_id x).
  apply later_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -later_map_compose.
  apply later_map_ext=>y; apply cFunctor_compose.
Qed.

952
Instance laterCF_contractive F : cFunctorContractive (laterCF F).
953
Proof.
954 955
  intros A1 A2 B1 B2 n fg fg' Hfg. apply laterC_map_contractive.
  destruct n as [|n]; simpl in *; first done. apply cFunctor_ne, Hfg.
956
Qed.
957

Ralf Jung's avatar
Ralf Jung committed
958
(** Sigma *)
Ralf Jung's avatar
Ralf Jung committed
959
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
960 961
  limit_preserving :  c : chain A, ( n, P (c n))  P (compl c).

Ralf Jung's avatar
Ralf Jung committed
962
Section sigma.
963
  Context {A : ofeT} {P : A  Prop}.
Ralf Jung's avatar
Ralf Jung committed
964 965 966

  (* TODO: Find a better place for this Equiv instance. It also
     should not depend on A being an OFE. *)
967
  Instance sig_equiv : Equiv (sig P) :=
Ralf Jung's avatar
Ralf Jung committed
968
    λ x1 x2, (proj1_sig x1)  (proj1_sig x2).
969
  Instance sig_dist : Dist (sig P) :=