cmra_big_op.v 27.1 KB
Newer Older
1
From iris.algebra Require Export cmra list.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.prelude Require Import functions gmap gmultiset.
3
Set Default Proof Using "Type*".
4

5 6 7 8 9 10 11 12 13
(** The operator [ [⋅] Ps ] folds [⋅] over the list [Ps]. This operator is not a
quantifier, so it binds strongly.

Apart from that, we define the following big operators with binders build in:

- The operator [ [⋅ list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
  refers to each element at index [k].
- The operator [ [⋅ map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
  refers to each element at index [k].
14
- The operator [ [⋅ set] x ∈ X, P ] folds over a set [X]. The binder [x] refers
15 16 17 18 19 20 21 22
  to each element.

Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)

(** * Big ops over lists *)
(* This is the basic building block for other big ops *)
Fixpoint big_op {M : ucmraT} (xs : list M) : M :=
23
  match xs with [] =>  | x :: xs => x  big_op xs end.
24 25
Arguments big_op _ !_ /.
Instance: Params (@big_op) 1.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Notation "'[⋅]' xs" := (big_op xs) (at level 20) : C_scope.

(** * Other big ops *)
Definition big_opL {M : ucmraT} {A} (l : list A) (f : nat  A  M) : M :=
  [] (imap f l).
Instance: Params (@big_opL) 2.
Typeclasses Opaque big_opL.
Notation "'[⋅' 'list' ] k ↦ x ∈ l , P" := (big_opL l (λ k x, P))
  (at level 200, l at level 10, k, x at level 1, right associativity,
   format "[⋅  list ]  k ↦ x  ∈  l ,  P") : C_scope.
Notation "'[⋅' 'list' ] x ∈ l , P" := (big_opL l (λ _ x, P))
  (at level 200, l at level 10, x at level 1, right associativity,
   format "[⋅  list ]  x  ∈  l ,  P") : C_scope.

Definition big_opM {M : ucmraT} `{Countable K} {A}
    (m : gmap K A) (f : K  A  M) : M :=
  [] (curry f <$> map_to_list m).
Instance: Params (@big_opM) 6.
Typeclasses Opaque big_opM.
Notation "'[⋅' 'map' ] k ↦ x ∈ m , P" := (big_opM m (λ k x, P))
  (at level 200, m at level 10, k, x at level 1, right associativity,
   format "[⋅  map ]  k ↦ x  ∈  m ,  P") : C_scope.
48 49 50
Notation "'[⋅' 'map' ] x ∈ m , P" := (big_opM m (λ _ x, P))
  (at level 200, m at level 10, x at level 1, right associativity,
   format "[⋅  map ]  x  ∈  m ,  P") : C_scope.
51 52 53 54 55 56 57 58

Definition big_opS {M : ucmraT} `{Countable A}
  (X : gset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opS) 5.
Typeclasses Opaque big_opS.
Notation "'[⋅' 'set' ] x ∈ X , P" := (big_opS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  set ]  x  ∈  X ,  P") : C_scope.
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60 61 62 63 64 65 66 67
Definition big_opMS {M : ucmraT} `{Countable A}
  (X : gmultiset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opMS) 5.
Typeclasses Opaque big_opMS.
Notation "'[⋅' 'mset' ] x ∈ X , P" := (big_opMS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  'mset' ]  x  ∈  X ,  P") : C_scope.

68 69
(** * Properties about big ops *)
Section big_op.
70 71
Context {M : ucmraT}.
Implicit Types xs : list M.
72 73

(** * Big ops *)
74 75 76 77 78
Lemma big_op_Forall2 R :
  Reflexive R  Proper (R ==> R ==> R) (@op M _) 
  Proper (Forall2 R ==> R) (@big_op M).
Proof. rewrite /Proper /respectful. induction 3; eauto. Qed.

79
Global Instance big_op_ne n : Proper (dist n ==> dist n) (@big_op M).
80
Proof. apply big_op_Forall2; apply _. Qed.
81 82 83
Global Instance big_op_proper : Proper (() ==> ()) (@big_op M) := ne_proper _.

Lemma big_op_nil : [] (@nil M) = .
84
Proof. done. Qed.
85
Lemma big_op_cons x xs : [] (x :: xs) = x  [] xs.
86
Proof. done. Qed.
87 88 89 90 91 92 93 94 95 96
Lemma big_op_app xs ys : [] (xs ++ ys)  [] xs  [] ys.
Proof.
  induction xs as [|x xs IH]; simpl; first by rewrite ?left_id.
  by rewrite IH assoc.
Qed.

Lemma big_op_mono xs ys : Forall2 () xs ys  [] xs  [] ys.
Proof. induction 1 as [|x y xs ys Hxy ? IH]; simpl; eauto using cmra_mono. Qed.

Global Instance big_op_permutation : Proper (() ==> ()) (@big_op M).
97 98
Proof.
  induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
99 100
  - by rewrite IH.
  - by rewrite !assoc (comm _ x).
101
  - by trans (big_op xs2).
102
Qed.
103 104

Lemma big_op_contains xs ys : xs `contains` ys  [] xs  [] ys.
105
Proof.
106 107
  intros [xs' ->]%contains_Permutation.
  rewrite big_op_app; apply cmra_included_l.
108
Qed.
109 110

Lemma big_op_delete xs i x : xs !! i = Some x  x  [] delete i xs  [] xs.
111 112
Proof. by intros; rewrite {2}(delete_Permutation xs i x). Qed.

113
Lemma big_sep_elem_of xs x : x  xs  x  [] xs.
114
Proof.
115 116
  intros [i ?]%elem_of_list_lookup. rewrite -big_op_delete //.
  apply cmra_included_l.
117
Qed.
118 119 120 121 122 123 124

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types f g : nat  A  M.

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  Lemma big_opL_nil f : ([ list] ky  nil, f k y) = .
  Proof. done. Qed.
  Lemma big_opL_cons f x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (S k) y.
  Proof. by rewrite /big_opL imap_cons. Qed.
  Lemma big_opL_singleton f x : ([ list] ky  [x], f k y)  f 0 x.
  Proof. by rewrite big_opL_cons big_opL_nil right_id. Qed.
  Lemma big_opL_app f l1 l2 :
    ([ list] ky  l1 ++ l2, f k y)
     ([ list] ky  l1, f k y)  ([ list] ky  l2, f (length l1 + k) y).
  Proof. by rewrite /big_opL imap_app big_op_app. Qed.

  Lemma big_opL_forall R f g l :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k y, l !! k = Some y  R (f k y) (g k y)) 
    R ([ list] k  y  l, f k y) ([ list] k  y  l, g k y).
  Proof.
    intros ? Hop. revert f g. induction l as [|x l IH]=> f g Hf; [done|].
    rewrite !big_opL_cons. apply Hop; eauto.
  Qed.

146 147 148
  Lemma big_opL_mono f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  [ list] k  y  l, g k y.
149
  Proof. apply big_opL_forall; apply _. Qed.
150 151 152 153
  Lemma big_opL_ext f g l :
    ( k y, l !! k = Some y  f k y = g k y) 
    ([ list] k  y  l, f k y) = [ list] k  y  l, g k y.
  Proof. apply big_opL_forall; apply _. Qed.
154 155 156
  Lemma big_opL_proper f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  ([ list] k  y  l, g k y).
157
  Proof. apply big_opL_forall; apply _. Qed.
158 159
  Lemma big_opL_permutation (f : A  M) l1 l2 :
    l1  l2  ([ list] x  l1, f x)  ([ list] x  l2, f x).
160
  Proof. intros Hl. by rewrite /big_opL !imap_const Hl. Qed.
161 162 163
  Lemma big_opL_contains (f : A  M) l1 l2 :
    l1 `contains` l2  ([ list] x  l1, f x)  ([ list] x  l2, f x).
  Proof. intros Hl. apply big_op_contains. rewrite !imap_const. by rewrite ->Hl. Qed.
164 165 166 167

  Global Instance big_opL_ne l n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opL (M:=M) l).
168
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
169 170 171
  Global Instance big_opL_proper' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
172
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
173 174 175
  Global Instance big_opL_mono' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
176
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
177

178 179 180 181 182 183 184
  Lemma big_opL_consZ_l (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (1 + k)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
  Lemma big_opL_consZ_r (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (k + 1)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  Lemma big_opL_lookup f l i x :
    l !! i = Some x  f i x  [ list] ky  l, f k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_opL_app big_opL_cons.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    eapply transitivity, cmra_included_r; eauto using cmra_included_l.
  Qed.

  Lemma big_opL_elem_of (f : A  M) l x : x  l  f x  [ list] y  l, f y.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_opL_lookup (λ _, f)).
  Qed.

  Lemma big_opL_fmap {B} (h : A  B) (f : nat  B  M) l :
    ([ list] ky  h <$> l, f k y)  ([ list] ky  l, f k (h y)).
  Proof. by rewrite /big_opL imap_fmap. Qed.

  Lemma big_opL_opL f g l :
    ([ list] kx  l, f k x  g k x)
     ([ list] kx  l, f k x)  ([ list] kx  l, g k x).
  Proof.
    revert f g; induction l as [|x l IH]=> f g.
    { by rewrite !big_opL_nil left_id. }
    rewrite !big_opL_cons IH.
    by rewrite -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
  Qed.
End list.

(** ** Big ops over finite maps *)
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types f g : K  A  M.

219 220 221 222 223 224 225 226 227
  Lemma big_opM_forall R f g m :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k x, m !! k = Some x  R (f k x) (g k x)) 
    R ([ map] k  x  m, f k x) ([ map] k  x  m, g k x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> -[i x] ? /=. by apply Hf, elem_of_map_to_list.
  Qed.

228 229 230 231
  Lemma big_opM_mono f g m1 m2 :
    m1  m2  ( k x, m2 !! k = Some x  f k x  g k x) 
    ([ map] k  x  m1, f k x)  [ map] k  x  m2, g k x.
  Proof.
232
    intros Hm Hf. trans ([ map] kx  m2, f k x).
233
    - by apply big_op_contains, fmap_contains, map_to_list_contains.
234
    - apply big_opM_forall; apply _ || auto.
235
  Qed.
236 237 238 239
  Lemma big_opM_ext f g m :
    ( k x, m !! k = Some x  f k x = g k x) 
    ([ map] k  x  m, f k x) = ([ map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.
240 241 242
  Lemma big_opM_proper f g m :
    ( k x, m !! k = Some x  f k x  g k x) 
    ([ map] k  x  m, f k x)  ([ map] k  x  m, g k x).
243
  Proof. apply big_opM_forall; apply _. Qed.
244 245 246 247

  Global Instance big_opM_ne m n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opM (M:=M) m).
248
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
249 250 251
  Global Instance big_opM_proper' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
252
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
253 254 255
  Global Instance big_opM_mono' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
256
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

  Lemma big_opM_empty f : ([ map] kx  , f k x) = .
  Proof. by rewrite /big_opM map_to_list_empty. Qed.

  Lemma big_opM_insert f m i x :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, f k y)  f i x  [ map] ky  m, f k y.
  Proof. intros ?. by rewrite /big_opM map_to_list_insert. Qed.

  Lemma big_opM_delete f m i x :
    m !! i = Some x 
    ([ map] ky  m, f k y)  f i x  [ map] ky  delete i m, f k y.
  Proof.
    intros. rewrite -big_opM_insert ?lookup_delete //.
    by rewrite insert_delete insert_id.
  Qed.

  Lemma big_opM_lookup f m i x :
    m !! i = Some x  f i x  [ map] ky  m, f k y.
  Proof. intros. rewrite big_opM_delete //. apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279
  Lemma big_opM_lookup_dom (f : K  M) m i :
    is_Some (m !! i)  f i  [ map] k_  m, f k.
  Proof. intros [x ?]. by eapply (big_opM_lookup (λ i x, f i)). Qed.
280 281 282 283 284 285 286 287 288 289 290 291 292 293

  Lemma big_opM_singleton f i x : ([ map] ky  {[i:=x]}, f k y)  f i x.
  Proof.
    rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
    by rewrite big_opM_empty right_id.
  Qed.

  Lemma big_opM_fmap {B} (h : A  B) (f : K  B  M) m :
    ([ map] ky  h <$> m, f k y)  ([ map] ky  m, f k (h y)).
  Proof.
    rewrite /big_opM map_to_list_fmap -list_fmap_compose.
    f_equiv; apply reflexive_eq, list_fmap_ext. by intros []. done.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
294 295 296
  Lemma big_opM_insert_override (f : K  A  M) m i x x' :
    m !! i = Some x  f i x  f i x' 
    ([ map] ky  <[i:=x']> m, f k y)  ([ map] ky  m, f k y).
297
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299
    intros ? Hx. rewrite -insert_delete big_opM_insert ?lookup_delete //.
    by rewrite -Hx -big_opM_delete.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  Qed.

  Lemma big_opM_fn_insert {B} (g : K  A  B  M) (f : K  B) m i (x : A) b :
    m !! i = None 
      ([ map] ky  <[i:=x]> m, g k y (<[i:=b]> f k))
     (g i x b  [ map] ky  m, g k y (f k)).
  Proof.
    intros. rewrite big_opM_insert // fn_lookup_insert.
    apply cmra_op_proper', big_opM_proper; auto=> k y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opM_fn_insert' (f : K  M) m i x P :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, <[i:=P]> f k)  (P  [ map] ky  m, f k).
  Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.

  Lemma big_opM_opM f g m :
Robbert Krebbers's avatar
Robbert Krebbers committed
317
    ([ map] kx  m, f k x  g k x)
318 319
     ([ map] kx  m, f k x)  ([ map] kx  m, g k x).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320 321 322 323
    induction m as [|i x ?? IH] using map_ind.
    { by rewrite !big_opM_empty left_id. }
    rewrite !big_opM_insert // IH.
    by rewrite -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
324 325 326 327 328 329 330 331 332 333
  Qed.
End gmap.


(** ** Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types f : A  M.

334 335 336 337 338 339 340 341 342
  Lemma big_opS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ set] x  X, f x) ([ set] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, elem_of_elements.
  Qed.

343 344 345 346 347 348
  Lemma big_opS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ set] x  X, f x)  [ set] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ set] x  Y, f x).
    - by apply big_op_contains, fmap_contains, elements_contains.
349
    - apply big_opS_forall; apply _ || auto.
350
  Qed.
351 352 353 354 355 356 357 358
  Lemma big_opS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ set] x  X, f x) = ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
  Lemma big_opS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ set] x  X, f x)  ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
359

360
  Global Instance big_opS_ne X n :
361
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opS (M:=M) X).
362
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
363
  Global Instance big_opS_proper' X :
364
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
365
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
366
  Global Instance big_opS_mono' X :
367
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
368
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
369 370 371 372 373 374 375 376 377 378 379 380 381

  Lemma big_opS_empty f : ([ set] x  , f x) = .
  Proof. by rewrite /big_opS elements_empty. Qed.

  Lemma big_opS_insert f X x :
    x  X  ([ set] y  {[ x ]}  X, f y)  (f x  [ set] y  X, f y).
  Proof. intros. by rewrite /big_opS elements_union_singleton. Qed.
  Lemma big_opS_fn_insert {B} (f : A  B  M) h X x b :
    x  X 
       ([ set] y  {[ x ]}  X, f y (<[x:=b]> h y))
     (f x b  [ set] y  X, f y (h y)).
  Proof.
    intros. rewrite big_opS_insert // fn_lookup_insert.
382
    apply cmra_op_proper', big_opS_proper; auto=> y ?.
383 384 385 386 387 388
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opS_fn_insert' f X x P :
    x  X  ([ set] y  {[ x ]}  X, <[x:=P]> f y)  (P  [ set] y  X, f y).
  Proof. apply (big_opS_fn_insert (λ y, id)). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
389 390 391 392 393 394 395 396 397 398
  Lemma big_opS_union f X Y :
    X  Y 
    ([ set] y  X  Y, f y)  ([ set] y  X, f y)  ([ set] y  Y, f y).
  Proof.
    intros. induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite left_id_L big_opS_empty left_id. }
    rewrite -assoc_L !big_opS_insert; [|set_solver..].
    by rewrite -assoc IH; last set_solver.
  Qed.

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
  Lemma big_opS_delete f X x :
    x  X  ([ set] y  X, f y)  f x  [ set] y  X  {[ x ]}, f y.
  Proof.
    intros. rewrite -big_opS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
  Qed.

  Lemma big_opS_elem_of f X x : x  X  f x  [ set] y  X, f y.
  Proof. intros. rewrite big_opS_delete //. apply cmra_included_l. Qed.

  Lemma big_opS_singleton f x : ([ set] y  {[ x ]}, f y)  f x.
  Proof. intros. by rewrite /big_opS elements_singleton /= right_id. Qed.

  Lemma big_opS_opS f g X :
    ([ set] y  X, f y  g y)  ([ set] y  X, f y)  ([ set] y  X, g y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
415 416 417 418
    induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite !big_opS_empty left_id. }
    rewrite !big_opS_insert // IH.
    by rewrite -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
419 420
  Qed.
End gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
421

Robbert Krebbers's avatar
Robbert Krebbers committed
422 423 424 425 426 427
Lemma big_opM_dom `{Countable K} {A} (f : K  M) (m : gmap K A) :
  ([ map] k_  m, f k)  ([ set] k  dom _ m, f k).
Proof.
  induction m as [|i x ?? IH] using map_ind; [by rewrite dom_empty_L|].
  by rewrite dom_insert_L big_opM_insert // IH big_opS_insert ?not_elem_of_dom.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

(** ** Big ops over finite msets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types f : A  M.

  Lemma big_opMS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ mset] x  X, f x) ([ mset] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, gmultiset_elem_of_elements.
  Qed.

  Lemma big_opMS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ mset] x  X, f x)  [ mset] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ mset] x  Y, f x).
    - by apply big_op_contains, fmap_contains, gmultiset_elements_contains.
    - apply big_opMS_forall; apply _ || auto.
  Qed.
  Lemma big_opMS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ mset] x  X, f x) = ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.
  Lemma big_opMS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ mset] x  X, f x)  ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.

461
  Global Instance big_opMS_ne X n :
Robbert Krebbers's avatar
Robbert Krebbers committed
462 463
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
464
  Global Instance big_opMS_proper' X :
Robbert Krebbers's avatar
Robbert Krebbers committed
465 466
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
467
  Global Instance big_opMS_mono' X :
Robbert Krebbers's avatar
Robbert Krebbers committed
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opMS_empty f : ([ mset] x  , f x) = .
  Proof. by rewrite /big_opMS gmultiset_elements_empty. Qed.

  Lemma big_opMS_union f X Y :
    ([ mset] y  X  Y, f y)  ([ mset] y  X, f y)  [ mset] y  Y, f y.
  Proof. by rewrite /big_opMS gmultiset_elements_union fmap_app big_op_app. Qed.

  Lemma big_opMS_singleton f x : ([ mset] y  {[ x ]}, f y)  f x.
  Proof.
    intros. by rewrite /big_opMS gmultiset_elements_singleton /= right_id.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
483 484 485
  Lemma big_opMS_delete f X x :
    x  X  ([ mset] y  X, f y)  f x  [ mset] y  X  {[ x ]}, f y.
  Proof.
486 487
    intros. rewrite -big_opMS_singleton -big_opMS_union.
    by rewrite -gmultiset_union_difference'.
Robbert Krebbers's avatar
Robbert Krebbers committed
488 489 490 491 492
  Qed.

  Lemma big_opMS_elem_of f X x : x  X  f x  [ mset] y  X, f y.
  Proof. intros. rewrite big_opMS_delete //. apply cmra_included_l. Qed.

493
  Lemma big_opMS_opMS f g X :
Robbert Krebbers's avatar
Robbert Krebbers committed
494 495
    ([ mset] y  X, f y  g y)  ([ mset] y  X, f y)  ([ mset] y  X, g y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
496 497 498 499
    induction X as [|x X IH] using gmultiset_ind.
    { by rewrite !big_opMS_empty left_id. }
    rewrite !big_opMS_union !big_opMS_singleton IH.
    by rewrite -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
500 501
  Qed.
End gmultiset.
502
End big_op.
503

Robbert Krebbers's avatar
Robbert Krebbers committed
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
(** Option *)
Lemma big_opL_None {M : cmraT} {A} (f : nat  A  option M) l :
  ([ list] kx  l, f k x) = None   k x, l !! k = Some x  f k x = None.
Proof.
  revert f. induction l as [|x l IH]=> f //=.
  rewrite big_opL_cons op_None IH. split.
  - intros [??] [|k] y ?; naive_solver.
  - intros Hl. split. by apply (Hl 0). intros k. apply (Hl (S k)).
Qed.
Lemma big_opM_None {M : cmraT} `{Countable K} {A} (f : K  A  option M) m :
  ([ map] kx  m, f k x) = None   k x, m !! k = Some x  f k x = None.
Proof.
  induction m as [|i x m ? IH] using map_ind=> //=.
  rewrite -equiv_None big_opM_insert // equiv_None op_None IH. split.
  { intros [??] k y. rewrite lookup_insert_Some; naive_solver. }
  intros Hm; split.
  - apply (Hm i). by simplify_map_eq.
  - intros k y ?. apply (Hm k). by simplify_map_eq.
Qed.
Lemma big_opS_None {M : cmraT} `{Countable A} (f : A  option M) X :
  ([ set] x  X, f x) = None   x, x  X  f x = None.
Proof.
  induction X as [|x X ? IH] using collection_ind_L; [done|].
  rewrite -equiv_None big_opS_insert // equiv_None op_None IH. set_solver.
Qed.
529 530 531 532 533 534 535 536
Lemma big_opMS_None {M : cmraT} `{Countable A} (f : A  option M) X :
  ([ mset] x  X, f x) = None   x, x  X  f x = None.
Proof.
  induction X as [|x X IH] using gmultiset_ind.
  { rewrite big_opMS_empty. set_solver. }
  rewrite -equiv_None big_opMS_union big_opMS_singleton equiv_None op_None IH.
  set_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
537 538

(** Commuting with respect to homomorphisms *)
539
Lemma big_opL_commute {M1 M2 : ucmraT} {A} (h : M1  M2)
540
    `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
541 542
  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
Proof.
543 544 545
  revert f. induction l as [|x l IH]=> f.
  - by rewrite !big_opL_nil ucmra_homomorphism_unit.
  - by rewrite !big_opL_cons cmra_homomorphism -IH.
546 547
Qed.
Lemma big_opL_commute1 {M1 M2 : ucmraT} {A} (h : M1  M2)
548 549
    `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
550
Proof.
551
  intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
552
  - by rewrite !big_opL_singleton.
553
  - by rewrite !(big_opL_cons _ x) cmra_homomorphism -IH.
554 555 556
Qed.

Lemma big_opM_commute {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
557
    `{!UCMRAHomomorphism h} (f : K  A  M1) m :
558 559
  h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
Proof.
560 561 562
  intros. induction m as [|i x m ? IH] using map_ind.
  - by rewrite !big_opM_empty ucmra_homomorphism_unit.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH.
563 564
Qed.
Lemma big_opM_commute1 {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
565 566
    `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
567
Proof.
568 569 570 571
  intros. induction m as [|i x m ? IH] using map_ind; [done|].
  destruct (decide (m = )) as [->|].
  - by rewrite !big_opM_insert // !big_opM_empty !right_id.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH //.
572 573
Qed.

574 575
Lemma big_opS_commute {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
576 577
  h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
Proof.
578 579 580
  intros. induction X as [|x X ? IH] using collection_ind_L.
  - by rewrite !big_opS_empty ucmra_homomorphism_unit.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH.
581
Qed.
582 583 584
Lemma big_opS_commute1 {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
585
Proof.
586 587 588 589
  intros. induction X as [|x X ? IH] using collection_ind_L; [done|].
  destruct (decide (X = )) as [->|].
  - by rewrite !big_opS_insert // !big_opS_empty !right_id.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH //.
590
Qed.
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
Lemma big_opMS_commute {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ mset] x  X, f x)  ([ mset] x  X, h (f x)).
Proof.
  intros. induction X as [|x X IH] using gmultiset_ind.
  - by rewrite !big_opMS_empty ucmra_homomorphism_unit.
  - by rewrite !big_opMS_union !big_opMS_singleton cmra_homomorphism -IH.
Qed.
Lemma big_opMS_commute1 {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ mset] x  X, f x)  ([ mset] x  X, h (f x)).
Proof.
  intros. induction X as [|x X IH] using gmultiset_ind; [done|].
  destruct (decide (X = )) as [->|].
  - by rewrite !big_opMS_union !big_opMS_singleton !big_opMS_empty !right_id.
  - by rewrite !big_opMS_union !big_opMS_singleton cmra_homomorphism -IH //.
Qed.

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
Lemma big_opL_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute. Qed.
Lemma big_opL_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute1. Qed.

Lemma big_opM_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : K  A  M1) m :
  h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute. Qed.
Lemma big_opM_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute1. Qed.

Lemma big_opS_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. unfold_leibniz. by apply big_opS_commute. Qed.
Lemma big_opS_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.
636 637 638 639 640 641 642 643 644

Lemma big_opMS_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ mset] x  X, f x) = ([ mset] x  X, h (f x)).
Proof. unfold_leibniz. by apply big_opMS_commute. Qed.
Lemma big_opMS_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ mset] x  X, f x) = ([ mset] x  X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opMS_commute1. Qed.