agree.v 17 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
4 5
(* FIXME: This file needs a 'Proof Using' hint. *)

Ralf Jung's avatar
Ralf Jung committed
6 7 8 9
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
12 13
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
14
}.
Ralf Jung's avatar
Ralf Jung committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
(* list_agrees is carefully written such that, when applied to a singleton, it is convertible to True. This makes working with agreement much more pleasant. *)
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
  Proof.
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
  Proof. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed. 

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
  Proof.
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
    
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
    Proof.
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
    
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
    Proof. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
    Proof.
      move=> /list_agrees_alt Hl. apply <-(list_agrees_alt R')=> a' b'.
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
      
  End fmap.

End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
216 217

Section agree.
218
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
219

Ralf Jung's avatar
Ralf Jung committed
220
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
221

Ralf Jung's avatar
Ralf Jung committed
222 223 224 225
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
226

227
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
228 229 230 231 232 233 234
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

235
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
238 239 240 241 242 243
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
244
Qed.
245 246
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

247
Program Instance agree_op : Op (agree A) := λ x y,
248
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
249
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
Instance agree_pcore : PCore (agree A) := Some.
251

252
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
253 254
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...  
Ralf Jung committed
255
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
256 257
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

258 259
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
260 261
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
262
Qed.
Ralf Jung's avatar
Ralf Jung committed
263 264 265 266 267 268
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
269 270
Instance:  x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
Ralf Jung's avatar
Ralf Jung committed
271 272
  intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. 
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Qed.
274
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
275
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
276
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
277
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
278
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
279

Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282 283 284
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
285 286 287 288 289 290 291 292 293 294 295 296
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

297 298 299
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
300
  by move=> /agree_op_invN->; rewrite agree_idemp.
301 302
Qed.

303
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
306 307 308 309 310 311
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
313
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
314
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
315
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
316
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
Qed.
318
Canonical Structure agreeR : cmraT :=
319
  CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
320

Robbert Krebbers's avatar
Robbert Krebbers committed
321 322
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
323
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Proof. by constructor. Qed.
325

Ralf Jung's avatar
Ralf Jung committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.

Global Instance agree_discrete :
  Discrete A  CMRADiscrete agreeR.
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
344

345
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Ralf Jung's avatar
Ralf Jung committed
346 347 348 349
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
350
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
351

Ralf Jung's avatar
Ralf Jung committed
352 353 354 355 356 357
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
Global Instance to_agree_inj : Inj () () (to_agree).
Proof.
  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
Qed.
358

359
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
360
Proof.
Ralf Jung's avatar
Ralf Jung committed
361 362 363 364 365 366
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

367 368 369 370 371 372 373 374 375 376
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
Qed.

Lemma to_agree_comp_valid (a b : A) :  (to_agree a  to_agree b)  a  b.
Proof.
  split.
  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
    intros Hv. apply Hv; simpl; set_solver.
  - intros ->. rewrite agree_idemp. done.
393
Qed.
394 395

(** Internalized properties *)
396
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
397
Proof.
Ralf Jung's avatar
Ralf Jung committed
398 399 400
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
401
Qed.
402
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
403
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404 405
End agree.

406
Arguments agreeC : clear implicits.
407
Arguments agreeR : clear implicits.
408

409
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
410
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
411
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
412
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
413 414
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
415
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
416

Robbert Krebbers's avatar
Robbert Krebbers committed
417
Section agree_map.
418
  Context {A B : ofeT} (f : A  B) `{Hf:  n, Proper (dist n ==> dist n) f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
420 421 422 423 424
  Proof.
    intros x y Hxy.
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
    eapply list_setequiv_fmap; last exact Hxy. apply _. 
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
426

427 428
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
429 430 431 432 433 434
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

435
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
436
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
437
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
438 439 440
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
441
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
442 443
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
444 445
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
446

447 448 449
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B).
450
Proof.
Ralf Jung's avatar
Ralf Jung committed
451 452 453
  intros f g Hfg x. apply: list_setequiv_ext.
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
454
Qed.
Ralf Jung's avatar
Ralf Jung committed
455

456 457 458 459
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
460 461 462
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
463 464 465 466 467 468 469 470
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
471 472 473 474 475 476 477

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.