base-logic.tex 13.3 KB
Newer Older
1 2 3
\section{Base Logic}
\label{sec:base-logic}

4
The base logic is parameterized by an arbitrary CMRA $\monoid$ having a unit $\munit$.
5
By \lemref{lem:cmra-unit-total-core}, this means that the core of $\monoid$ is a total function, so we will treat it as such in the following.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
This defines the structure of resources that can be owned.

As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
\[
	\SigType \supseteq \{ \textlog{M}, \Prop \}
\]
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}

\paragraph{Syntax.}
29
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\Var$ of variables (ranged over by metavariables $\var$, $\varB$, $\varC$).
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Below, $\melt$ ranges over $\monoid$ and $i$ ranges over $\set{1,2}$.

\begin{align*}
  \type \bnfdef{}&
      \sigtype \mid
      1 \mid
      \type \times \type \mid
      \type \to \type
\\[0.4em]
  \term, \prop, \pred \bnfdef{}&
      \var \mid
      \sigfn(\term_1, \dots, \term_n) \mid
      () \mid
      (\term, \term) \mid
      \pi_i\; \term \mid
      \Lam \var:\type.\term \mid
      \term(\term)  \mid
      \melt \mid
      \mcore\term \mid
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
    \term =_\type \term \mid
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
    \MU \var:\type. \term  \mid
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
\\&
Ralf Jung's avatar
Ralf Jung committed
64
    \ownM{\term} \mid \mval(\term) \mid
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    \always\prop \mid
    {\later\prop} \mid
    \upd \prop\mid
\end{align*}
Recursive predicates must be \emph{guarded}: in $\MU \var. \term$, the variable $\var$ can only appear under the later $\later$ modality.

Note that the modalities $\upd$, $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.


\paragraph{Variable conventions.}
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.

A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.

\judgment[Well-typed terms]{\vctx \proves_\Sig \wtt{\term}{\type}}
\begin{mathparpagebreakable}
%%% variables and function symbols
	\axiom{x : \type \proves \wtt{x}{\type}}
\and
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
\and
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
\and
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
	\axiom{\vctx \proves \wtt{()}{1}}
\and
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
\and
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
%%% functions
\and
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
\and
	\infer
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
%%% monoids
\and
        \infer{}{\vctx \proves \wtt\munit{\textlog{M}}}
\and
	\infer{\vctx \proves \wtt\melt{\textlog{M}}}{\vctx \proves \wtt{\mcore\melt}{\textlog{M}}}
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
	}{
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
	}
\and
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
\and
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
Ralf Jung's avatar
Ralf Jung committed
171
		{\vctx \proves \wtt{\ownM{\melt}}{\Prop}}
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
\and
	\infer{\vctx \proves \wtt{\melt}{\type} \and \text{$\type$ is a CMRA}}
		{\vctx \proves \wtt{\mval(\melt)}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop}
	}{
		\vctx \proves \wtt{\upd \prop}{\Prop}
	}
\end{mathparpagebreakable}

\subsection{Proof rules}
\label{sec:proof-rules}

192 193 194 195 196
The judgment $\vctx \mid \prop \proves \propB$ says that with free variables $\vctx$, proposition $\propB$ holds whenever assumption $\prop$ holds.
Most of the rules will entirely omit the variable contexts $\vctx$.
In this case, we assume the same arbitrary context is used for every constituent of the rules.
%Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Axioms $\vctx \mid \prop \provesIff \propB$ indicate that both $\vctx \mid \prop \proves \propB$ and $\vctx \mid \propB \proves \prop$ are proof rules of the logic.
197

198
\judgment{\vctx \mid \prop \proves \propB}
199 200 201 202
\paragraph{Laws of intuitionistic higher-order logic with equality.}
This is entirely standard.
\begin{mathparpagebreakable}
\infer[Asm]
203 204 205 206 207 208
  {}
  {\prop \proves \prop}
\and
\infer[Subst]
  {\prop \proves \propB \and \propB \proves \propC}
  {\prop \proves \propC}
209 210
\and
\infer[Eq]
211 212
  {\vctx,\var:\type \proves \wtt\propB\Prop \\ \vctx\mid\prop \proves \propB[\term/\var] \\ \vctx\mid\prop \proves \term =_\type \term'}
  {\vctx\mid\prop \proves \propB[\term'/\var]}
213 214 215
\and
\infer[Refl]
  {}
216
  {\TRUE \proves \term =_\type \term}
217 218
\and
\infer[$\bot$E]
219 220
  {}
  {\FALSE \proves \prop}
221 222 223
\and
\infer[$\top$I]
  {}
224
  {\prop \proves \TRUE}
225 226
\and
\infer[$\wedge$I]
227 228
  {\prop \proves \propB \\ \prop \proves \propC}
  {\prop \proves \propB \land \propC}
229 230
\and
\infer[$\wedge$EL]
231 232
  {\prop \proves \propB \land \propC}
  {\prop \proves \propB}
233 234
\and
\infer[$\wedge$ER]
235 236
  {\prop \proves \propB \land \propC}
  {\prop \proves \propC}
237 238
\and
\infer[$\vee$IL]
239 240
  {\prop \proves \propB }
  {\prop \proves \propB \lor \propC}
241 242
\and
\infer[$\vee$IR]
243 244
  {\prop \proves \propC}
  {\prop \proves \propB \lor \propC}
245 246
\and
\infer[$\vee$E]
247 248 249
  {\prop \proves \propC \\
   \propB \proves \propC}
  {\prop \lor \propB \proves \propC}
250 251
\and
\infer[$\Ra$I]
252 253
  {\prop \land \propB \proves \propC}
  {\prop \proves \propB \Ra \propC}
254 255
\and
\infer[$\Ra$E]
256 257
  {\prop \proves \propB \Ra \propC \\ \prop \proves \propB}
  {\prop \proves \propC}
258 259
\and
\infer[$\forall$I]
260 261
  { \vctx,\var : \type\mid\prop \proves \propB}
  {\vctx\mid\prop \proves \All \var: \type. \propB}
262 263
\and
\infer[$\forall$E]
264
  {\vctx\mid\prop \proves \All \var :\type. \propB \\
265
   \vctx \proves \wtt\term\type}
266
  {\vctx\mid\prop \proves \propB[\term/\var]}
267
\\
268
\infer[$\exists$I]
269
  {\vctx\mid\prop \proves \propB[\term/\var] \\
270
   \vctx \proves \wtt\term\type}
271
  {\vctx\mid\prop \proves \exists \var: \type. \propB}
272 273
\and
\infer[$\exists$E]
274 275
  {\vctx,\var : \type\mid\prop \proves \propB}
  {\vctx\mid\Exists \var: \type. \prop \proves \propB}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
% \and
% \infer[$\lambda$]
%   {}
%   {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
% \and
% \infer[$\mu$]
%   {}
%   {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda$ and $\mu$.


\paragraph{Laws of (affine) bunched implications.}
\begin{mathpar}
\begin{array}{rMcMl}
  \TRUE * \prop &\provesIff& \prop \\
292 293
  \prop * \propB &\proves& \propB * \prop \\
  (\prop * \propB) * \propC &\proves& \prop * (\propB * \propC)
294 295 296 297 298 299 300 301 302 303 304 305
\end{array}
\and
\infer[$*$-mono]
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
\and
\inferB[$\wand$I-E]
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
\end{mathpar}

306
\paragraph{Laws for the always modality.}
307
\begin{mathpar}
308 309 310
\infer[$\always$-mono]
  {\prop \proves \propB}
  {\always{\prop} \proves \always{\propB}}
311
\and
312 313 314
\infer[$\always$-E]{}
{\always\prop \proves \prop}
\and
315
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
316
  \TRUE &\proves& \always{\TRUE} \\
317 318 319
  \always{(\prop \land \propB)} &\proves& \always{(\prop * \propB)} \\
  \always{\prop} \land \propB &\proves& \always{\prop} * \propB
\end{array}
320
\and
321 322 323 324
\begin{array}[c]{rMcMl}
  \always{\prop} &\proves& \always\always\prop \\
  \All x. \always{\prop} &\proves& \always{\All x. \prop} \\
  \always{\Exists x. \prop} &\proves& \Exists x. \always{\prop}
325 326 327
\end{array}
\end{mathpar}

328

329 330 331
\paragraph{Laws for the later modality.}
\begin{mathpar}
\infer[$\later$-mono]
332 333
  {\prop \proves \propB}
  {\later\prop \proves \later{\propB}}
334 335 336 337 338 339
\and
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
\and
\begin{array}[c]{rMcMl}
340 341
  \All x. \later\prop &\proves& \later{\All x.\prop} \\
  \later\Exists x. \prop &\proves& \later\FALSE \lor {\Exists x.\later\prop}  \\
Ralf Jung's avatar
Ralf Jung committed
342
  \later\prop &\proves& \later\FALSE \lor (\later\FALSE \Ra \prop)
343 344 345
\end{array}
\and
\begin{array}[c]{rMcMl}
346
  \later{(\prop * \propB)} &\provesIff& \later\prop * \later\propB \\
Ralf Jung's avatar
Ralf Jung committed
347
  \always{\later\prop} &\provesIff& \later\always{\prop}
348 349 350
\end{array}
\end{mathpar}

351

Ralf Jung's avatar
Ralf Jung committed
352
\paragraph{Laws for resources and validity.}
353
\begin{mathpar}
354
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
355 356 357 358
\ownM{\melt} * \ownM{\meltB} &\provesIff&  \ownM{\melt \mtimes \meltB} \\
\ownM\melt &\proves& \always{\ownM{\mcore\melt}} \\
\TRUE &\proves&  \ownM{\munit} \\
\later\ownM\melt &\proves& \Exists\meltB. \ownM\meltB \land \later(\melt = \meltB)
359
\end{array}
Ralf Jung's avatar
Ralf Jung committed
360 361 362 363 364 365 366 367
% \and
% \infer[valid-intro]
% {\melt \in \mval}
% {\TRUE \vdash \mval(\melt)}
% \and
% \infer[valid-elim]
% {\melt \notin \mval_0}
% {\mval(\melt) \proves \FALSE}
368
\and
369
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
370
\ownM{\melt} &\proves& \mval(\melt) \\
371 372 373
\mval(\melt \mtimes \meltB) &\proves& \mval(\melt) \\
\mval(\melt) &\proves& \always\mval(\melt)
\end{array}
374 375
\end{mathpar}

376

377
\paragraph{Laws for the resource update modality.}
378
\begin{mathpar}
Ralf Jung's avatar
Ralf Jung committed
379
\inferH{upd-mono}
380 381 382
{\prop \proves \propB}
{\upd\prop \proves \upd\propB}

Ralf Jung's avatar
Ralf Jung committed
383
\inferH{upd-intro}
384 385
{}{\prop \proves \upd \prop}

Ralf Jung's avatar
Ralf Jung committed
386
\inferH{upd-trans}
387 388 389
{}
{\upd \upd \prop \proves \upd \prop}

Ralf Jung's avatar
Ralf Jung committed
390
\inferH{upd-frame}
391 392 393 394
{}{\propB * \upd\prop \proves \upd (\propB * \prop)}

\inferH{upd-update}
{\melt \mupd \meltsB}
Ralf Jung's avatar
Ralf Jung committed
395
{\ownM\melt \proves \upd \Exists\meltB\in\meltsB. \ownM\meltB}
396
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
397 398
The premise in \ruleref{upd-update} is a \emph{meta-level} side-condition that has to be proven about $a$ and $B$.
\ralf{Trouble is, we don't actually have $\in$ inside the logic...}
399

Ralf Jung's avatar
Ralf Jung committed
400
\subsection{Consistency}
401

Ralf Jung's avatar
Ralf Jung committed
402
The consistency statement of the logic reads as follows: For any $n$, we have
403
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
404
  \lnot(\TRUE \proves (\upd\later)^n\spac\FALSE)
405 406
\end{align*}
where $(\upd\later)^n$ is short for $\upd\later$ being nested $n$ times.
407

Ralf Jung's avatar
Ralf Jung committed
408 409 410 411
The reason we want a stronger consistency than the usual $\lnot(\TRUE \proves \FALSE)$ is our modalities: it should be impossible to derive a contradiction below the modalities.
For $\always$, this follows from the elimination rule, but the other two modalities do not have an elimination rule.
Hence we declare that it is impossible to derive a contradiction below any combination of these two modalities.

412 413 414 415 416

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: