cmra.v 47.4 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5 6 7 8 9 10

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

11 12 13 14 15
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
16 17 18
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
19
Hint Extern 0 (_  _) => reflexivity.
20 21
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
24
Notation "✓{ n } x" := (validN n x)
25
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
26

27 28
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
29
Notation "✓ x" := (valid x) (at level 20) : C_scope.
30

31
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
32
Notation "x ≼{ n } y" := (includedN n x y)
33
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
34
Instance: Params (@includedN) 4.
35
Hint Extern 0 (_ {_} _) => reflexivity.
36

Robbert Krebbers's avatar
Robbert Krebbers committed
37
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* setoids *)
39
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
42
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
43
  (* valid *)
44
  mixin_cmra_valid_validN x :  x   n, {n} x;
45
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
46
  (* monoid *)
47 48
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
51
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
52
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
53
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
54 55
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
56
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
57
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
58

Robbert Krebbers's avatar
Robbert Krebbers committed
59
(** Bundeled version *)
60
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62 63 64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_cofe_mixin : CofeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73 74
Arguments CMRAT' _ {_ _ _ _ _ _ _} _ _ _.
Notation CMRAT A m m' := (CMRAT' A m m' A).
75 76 77 78
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Arguments cmra_pcore : simpl never.
80
Arguments cmra_op : simpl never.
81
Arguments cmra_valid : simpl never.
82 83 84
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Add Printing Constructor cmraT.
86 87 88 89
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
90
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92
Canonical Structure cmra_cofeC.

93 94 95 96 97 98
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
102 103
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
104 105
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
106 107
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
108 109 110 111
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113 114 115
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
116
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
117
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
118
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
119 120
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
121
  Lemma cmra_extend n x y1 y2 :
122
    {n} x  x {n} y1  y2 
123
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
124
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
125 126
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130 131 132 133 134
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

135
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
136 137
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
138

Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141 142 143 144 145 146 147 148 149
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

150
(** * CMRAs with a unit element *)
151
(** We use the notation ∅ because for most instances (maps, sets, etc) the
152
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
153
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
154 155
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  mixin_ucmra_pcore_unit : pcore   Some 
157
}.
158

159
Structure ucmraT := UCMRAT' {
160 161 162 163
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
164
  ucmra_pcore : PCore ucmra_car;
165 166 167 168 169 170
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
171
  ucmra_mixin : UCMRAMixin ucmra_car;
172
  _ : Type;
173
}.
174 175
Arguments UCMRAT' _ {_ _ _ _ _ _ _ _} _ _ _ _.
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
176 177 178 179
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
Arguments ucmra_pcore : simpl never.
181 182 183 184 185 186 187
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
188
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
189 190 191 192 193 194 195 196 197 198 199 200 201 202
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
203 204
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
205
End ucmra_mixin.
206

207
(** * Discrete CMRAs *)
208
Class CMRADiscrete (A : cmraT) := {
209 210 211 212
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
213
(** * Morphisms *)
214
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
217
  cmra_monotone x y : x  y  f x  f y
218
}.
219
Arguments validN_preserving {_ _} _ {_} _ _ _.
220
Arguments cmra_monotone {_ _} _ {_} _ _ _.
221

Robbert Krebbers's avatar
Robbert Krebbers committed
222
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
223
Section cmra.
224
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
Implicit Types x y z : A.
226
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
227

228
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
229 230 231 232 233 234 235 236 237
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
238
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240 241
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
242
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
247 248 249 250 251 252 253 254
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
255 256 257 258
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279 280
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
281

Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284 285
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

286
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
287
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
288 289 290
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
292
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
293 294 295
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
296
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
297 298 299 300 301 302 303 304
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
305 306 307 308
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311 312 313 314 315 316
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
317

318 319 320 321
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

322
(** ** Exclusive elements *)
323
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
324
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
325 326 327 328 329 330
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
331
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
332
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
333

334
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
338
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
340
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
Global Instance cmra_included_trans: Transitive (@included A _ _).
342
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
344
Qed.
345 346
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
348
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
351

Robbert Krebbers's avatar
Robbert Krebbers committed
352
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
353
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
355 356 357 358 359 360 361
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
362
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
363
Lemma cmra_included_r x y : y  x  y.
364
Proof. rewrite (comm op); apply cmra_included_l. Qed.
365

366
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368 369
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
370
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372
  exists cy; by rewrite Hcx.
Qed.
373
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
377
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
378 379 380 381 382
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384 385
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
386
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
387
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
388
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
389
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
390 391 392 393
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
394

Robbert Krebbers's avatar
Robbert Krebbers committed
395
Lemma cmra_included_dist_l n x1 x2 x1' :
396
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Proof.
398 399
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Qed.
401

Robbert Krebbers's avatar
Robbert Krebbers committed
402 403 404 405 406 407 408 409 410 411 412 413
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
414
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
415 416
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
417
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
418 419 420 421 422 423 424 425 426 427 428 429 430
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
431 432
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
463
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
464 465
  Proof.
    intros [z ->].
466
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
467 468 469
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
470
(** ** Timeless *)
471
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
472 473
Proof.
  intros ?? [x' ?].
474
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
475
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
476
Qed.
477 478
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
479
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
480
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482
Proof.
  intros ??? z Hz.
483
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
484
  { rewrite -?Hz. by apply cmra_valid_validN. }
485
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
486
Qed.
487

488 489 490 491 492 493 494 495
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
  split; first by apply cmra_included_includedN.
497 498
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
499 500
End cmra.

501 502
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
519
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
Robbert Krebbers's avatar
Robbert Krebbers committed
520 521
      eauto using ucmra_unit_least, (persistent ).
  Qed.
522
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
523 524
Hint Immediate cmra_unit_total.

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
  Lemma persistent_dup_L x `{!Persistent x} : x  x  x.
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585 586 587 588 589 590 591 592 593 594 595
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
596
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
597 598 599
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
600
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
601 602 603 604 605 606 607 608
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
609
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
610 611 612
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
613

614
(** * Properties about monotone functions *)
615
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
616
Proof. repeat split; by try apply _. Qed.
617 618
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
619 620
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
  - apply _. 
622
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
623
  - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone.
624
Qed.
625

626 627
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
629
  Lemma cmra_monotoneN n x y : x {n} y  f x {n} f y.
630
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
631
    intros [z ->].
632
    apply cmra_included_includedN, (cmra_monotone f), cmra_included_l.
633
  Qed.
634
  Lemma valid_preserving x :  x   f x.
635 636 637
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

638 639
(** Functors *)
Structure rFunctor := RFunctor {
640
  rFunctor_car : cofeT  cofeT  cmraT;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

697 698 699 700 701 702 703 704 705 706 707 708 709
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
710
  Lemma cmra_transport_core x : T (core x) = core (T x).
711
  Proof. by destruct H. Qed.
712
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
713
  Proof. by destruct H. Qed.
714
  Lemma cmra_transport_valid x :  T x   x.
715 716 717
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
718 719
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
720 721
End cmra_transport.

722 723
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
724
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
725
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
726 727 728 729
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
730
  (* monoid *)
731 732
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
733 734
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
735
  ra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
736
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
737
  ra_valid_op_l x y :  (x  y)   x
738 739
}.

740
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
741
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
742 743
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
744

745
  Instance discrete_validN : ValidN A := λ n x,  x.
746
  Definition discrete_cmra_mixin : CMRAMixin A.
747
  Proof.
748
    destruct ra_mix; split; try done.
749
    - intros x; split; first done. by move=> /(_ 0).
750
    - intros n x y1 y2 ??; by exists y1, y2.
751 752 753
  Qed.
End discrete.

754 755
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
756 757
Notation discreteUR A ra_mix ucmra_mix :=
  (UCMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix) ucmra_mix).
758

Robbert Krebbers's avatar
Robbert Krebbers committed
759
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
760 761 762
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
763 764 765 766 767 768 769 770 771 772
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
773
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
774 775 776 777 778 779 780 781 782
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
783
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
784 785 786 787
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

788 789 790
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
791
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
792
  Instance unit_pcore : PCore () := λ x, Some x.
793
  Instance unit_op : Op () := λ x y, ().
794
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
795
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
796
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
797 798 799 800 801 802 803

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

804
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
805
  Proof. done. Qed.
806
  Global Instance unit_persistent (x : ()) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
807
  Proof. by constructor. Qed.
808
End unit.
809

Robbert Krebbers's avatar
Robbert Krebbers committed
810 811 812 813 814 815
(** ** Natural numbers *)
Section nat.
  Instance nat_valid : Valid nat := λ x, True.
  Instance nat_validN : ValidN nat := λ n x, True.
  Instance nat_pcore : PCore nat := λ x, Some 0.
  Instance nat_op : Op nat := plus.
816
  Definition nat_op_plus x y : x  y = x + y := eq_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
817 818 819 820 821 822
  Lemma nat_included (x y : nat) : x  y  x  y.
  Proof.
    split.
    - intros [z ->]; unfold op, nat_op; lia.
    - exists (y - x). by apply le_plus_minus.
  Qed.
823
  Lemma nat_ra_mixin : RAMixin nat.
Robbert Krebbers's avatar
Robbert Krebbers committed
824
  Proof.
825
    apply ra_total_mixin; try by eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
826 827 828 829 830
    - solve_proper.
    - intros x y z. apply Nat.add_assoc.
    - intros x y. apply Nat.add_comm.
    - by exists 0.
  Qed.
831
  Canonical Structure natR : cmraT := discreteR nat nat_ra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
832 833 834 835 836

  Instance nat_empty : Empty nat := 0.
  Lemma nat_ucmra_mixin : UCMRAMixin nat.
  Proof. split; apply _ || done. Qed.
  Canonical Structure natUR : ucmraT :=
837
    discreteUR nat nat_ra_mixin nat_ucmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
838 839 840 841 842

  Global Instance nat_cmra_discrete : CMRADiscrete natR.
  Proof. constructor; apply _ || done. Qed.
End nat.

843 844 845 846 847 848
Definition mnat := nat.

Section mnat.
  Instance mnat_valid : Valid mnat := λ x, True.
  Instance mnat_validN : ValidN mnat := λ n x, True.
  Instance mnat_pcore : PCore mnat := Some.
Robbert Krebbers's avatar
Robbert Krebbers committed
849 850
  Instance mnat_op : Op mnat := Nat.max.
  Definition mnat_op_max x y : x  y = x `max` y := eq_refl.
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
  Lemma mnat_included (x y : mnat) : x  y  x  y.
  Proof.
    split.
    - intros [z ->]; unfold op, mnat_op; lia.
    - exists y. by symmetry; apply Nat.max_r.
  Qed.
  Lemma mnat_ra_mixin : RAMixin mnat.
  Proof.
    apply ra_total_mixin; try by eauto.
    - solve_proper.
    - solve_proper.
    - intros x y z. apply Nat.max_assoc.
    - intros x y. apply Nat.max_comm.
    - intros x. apply Max.max_idempotent.
  Qed.
  Canonical Structure mnatR : cmraT := discreteR mnat mnat_ra_mixin.

  Instance mnat_empty : Empty mnat := 0.
  Lemma mnat_ucmra_mixin : UCMRAMixin mnat.
  Proof. split; apply _ || done. Qed.
  Canonical Structure mnatUR : ucmraT :=
    discreteUR mnat mnat_ra_mixin mnat_ucmra_mixin.

  Global Instance mnat_cmra_discrete : CMRADiscrete mnatR.
  Proof. constructor; apply _ || done. Qed.
  Global Instance mnat_persistent (x : mnat) : Persistent x.
  Proof. by constructor. Qed.
End mnat.

880
(** ** Product *)
881 882
Section prod.
  Context {A B : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
883 884 885
  Local Arguments pcore _ _ !_ /.
  Local Arguments cmra_pcore _ !_/.

886
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).