logic.tex 24 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
8 9
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{\bot})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, \bot$. \\
Ralf Jung's avatar
Ralf Jung committed
10
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr_f$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr_f$ is forked off.
Ralf Jung's avatar
Ralf Jung committed
11 12 13 14 15 16 17 18
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\item There is a predicate defining \emph{atomic} expressions satisfying
\let\oldcr\cr
\begin{mathpar}
  {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
  {{
    \begin{inbox}
Ralf Jung's avatar
Ralf Jung committed
19
\All\expr_1, \state_1, \expr_2, \state_2, \expr_f. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr_f \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
Ralf Jung's avatar
Ralf Jung committed
20 21 22 23 24
    \end{inbox}
}}
\end{mathpar}
In other words, atomic expression \emph{reduce in one step to a value}.
It does not matter whether they fork off an arbitrary expression.
25 26
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
27 28
\begin{defn}
  An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
Ralf Jung's avatar
Ralf Jung committed
29
  \[ \Exists \expr_2, \state_2, \expr_f. \expr,\state \step \expr_2,\state_2,\expr_f \]
Ralf Jung's avatar
Ralf Jung committed
30 31
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
32
\begin{defn}[Context]
33
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
34
  \begin{enumerate}[itemsep=0pt]
35 36 37
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
Ralf Jung's avatar
Ralf Jung committed
38
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr_f. \expr_1, \state_1 \step \expr_2,\state_2,\expr_f \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr_f $
39
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
Ralf Jung's avatar
Ralf Jung committed
40
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr_f. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr_f \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr_f $
41
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
42 43
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
44
\subsection{Concurrent language}
Ralf Jung's avatar
Ralf Jung committed
45 46

For any language $\Lang$, we define the corresponding thread-pool semantics.
47 48 49

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
50
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
51 52
\]

Ralf Jung's avatar
Ralf Jung committed
53 54
\judgment{Machine reduction} {\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
55 56
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
57
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr_f \and \expr_f \neq \bot}
Ralf Jung's avatar
Ralf Jung committed
58
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
Ralf Jung's avatar
Ralf Jung committed
59
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr_f]}{\state'}}
Ralf Jung's avatar
Ralf Jung committed
60 61 62 63
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
64 65
\end{mathpar}

66
\clearpage
Ralf Jung's avatar
Ralf Jung committed
67
\section{Logic}
Ralf Jung's avatar
Ralf Jung committed
68 69 70 71

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item A language $\Lang$
Ralf Jung's avatar
Ralf Jung committed
72
\item A locally contractive bifunctor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state, such that for all COFEs $A$, the CMRA $\iFunc(A)$ has a unit
Ralf Jung's avatar
Ralf Jung committed
73
\end{itemize}
74

Ralf Jung's avatar
Ralf Jung committed
75 76 77
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
78
\[
79
	\SigType \supseteq \{ \textlog{Val}, \textlog{Expr}, \textlog{State}, \textlog{M}, \textlog{InvName}, \textlog{InvMask}, \Prop \}
80
\]
Ralf Jung's avatar
Ralf Jung committed
81 82 83
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
84 85 86 87 88
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
89 90 91 92 93 94

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
95 96

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
97
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
98

99
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
100
  \type \bnfdef{}&
Ralf Jung's avatar
Ralf Jung committed
101
      \sigtype \mid
102
      1 \mid
Ralf Jung's avatar
Ralf Jung committed
103 104 105
      \type \times \type \mid
      \type \to \type
\\[0.4em]
Ralf Jung's avatar
Ralf Jung committed
106
  \term, \prop, \pred \bnfdef{}&
107
      \var \mid
108
      \sigfn(\term_1, \dots, \term_n) \mid
109
      () \mid
110 111
      (\term, \term) \mid
      \pi_i\; \term \mid
112
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
113
      \term(\term)  \mid
114
      \munit \mid
Ralf Jung's avatar
Ralf Jung committed
115
      \mcore\term \mid
116 117 118 119
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
120
    \term =_\type \term \mid
121 122 123 124 125 126
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
127
    \MU \var:\type. \pred  \mid
Ralf Jung's avatar
Ralf Jung committed
128 129
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
130 131
\\&
    \knowInv{\term}{\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
132
    \ownGGhost{\term} \mid \mval(\term) \mid
133 134 135
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
136
    \pvs[\term][\term] \prop\mid
137
    \wpre{\term}[\term]{\Ret\var.\term}
138
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
139
Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
140

141
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
142
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
143 144
If we omit the mask, then it is $\top$ for weakest precondition $\wpre\expr{\Ret\var.\prop}$ and $\emptyset$ for primitive view shifts $\pvs \prop$.

Ralf Jung's avatar
Ralf Jung committed
145 146 147 148 149
Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
This is a \emph{meta-level} assertions about propositions, defined as follows:

\[ \vctx \proves \timeless{\prop} \eqdef \vctx\mid\later\prop \proves \prop \lor \later\FALSE \]

150

151
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
152
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
153 154
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
155
 \text{metavariable} & \text{type} \\\hline
156
  \term, \termB & \text{arbitrary} \\
157 158 159
  \val, \valB & \textlog{Val} \\
  \expr & \textlog{Expr} \\
  \state & \textlog{State} \\
160 161 162
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
163
 \text{metavariable} & \text{type} \\\hline
164 165 166
  \iname & \textlog{InvName} \\
  \mask & \textlog{InvMask} \\
  \melt, \meltB & \textlog{M} \\
167
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
168
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
169 170 171 172
\end{array}
\]

\paragraph{Variable conventions.}
Ralf Jung's avatar
Ralf Jung committed
173
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
174 175 176 177 178


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
179
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
180

Ralf Jung's avatar
Ralf Jung committed
181 182
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
183

Ralf Jung's avatar
Ralf Jung committed
184
\judgment{Well-typed terms}{\vctx \proves_\Sig \wtt{\term}{\type}}
185 186
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
187
	\axiom{x : \type \proves \wtt{x}{\type}}
188
\and
Ralf Jung's avatar
Ralf Jung committed
189 190
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
191
\and
Ralf Jung's avatar
Ralf Jung committed
192 193
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
194
\and
Ralf Jung's avatar
Ralf Jung committed
195 196
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
197 198 199 200 201 202 203 204 205 206 207
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
208
	\axiom{\vctx \proves \wtt{()}{1}}
209
\and
Ralf Jung's avatar
Ralf Jung committed
210 211
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
212
\and
Ralf Jung's avatar
Ralf Jung committed
213 214
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
215 216
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
217 218
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
219 220
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
221 222
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
223
%%% monoids
224 225
\and
        \infer{}{\vctx \proves \wtt\munit{\textlog{M}}}
226
\and
Ralf Jung's avatar
Ralf Jung committed
227
	\infer{\vctx \proves \wtt\melt{\textlog{M}}}{\vctx \proves \wtt{\mcore\melt}{\textlog{M}}}
228
\and
229 230
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
231 232 233 234 235 236
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
237 238
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
256 257
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
258
	}{
259
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
260 261
	}
\and
Ralf Jung's avatar
Ralf Jung committed
262 263
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
264
\and
Ralf Jung's avatar
Ralf Jung committed
265 266
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
267 268 269
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
270
		\vctx \proves \wtt{\iname}{\textlog{InvName}}
271 272 273 274
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
275
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
276
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
Ralf Jung's avatar
Ralf Jung committed
277 278 279
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
		{\vctx \proves \wtt{\mval(\melt)}{\Prop}}
280
\and
281
	\infer{\vctx \proves \wtt{\state}{\textlog{State}}}
282 283 284 285 286 287 288 289 290 291
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
292 293
		\vctx \proves \wtt{\mask}{\textlog{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textlog{InvMask}}
294
	}{
Ralf Jung's avatar
Ralf Jung committed
295
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
296 297 298
	}
\and
	\infer{
299 300 301
		\vctx \proves \wtt{\expr}{\textlog{Expr}} \and
		\vctx,\var:\textlog{Val} \proves \wtt{\term}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textlog{InvMask}}
302
	}{
303
		\vctx \proves \wtt{\wpre{\expr}[\mask]{\Ret\var.\term}}{\Prop}
304 305 306
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
307
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
308

309 310
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
311
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Ralf Jung's avatar
Ralf Jung committed
312
Axioms $\vctx \mid \prop \provesIff \propB$ indicate that both $\vctx \mid \prop \proves \propB$ and $\vctx \mid \propB \proves \prop$ can be derived.
313

314
\judgment{}{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
315
\paragraph{Laws of intuitionistic higher-order logic with equality.}
316
This is entirely standard.
317 318
\begin{mathparpagebreakable}
\infer[Asm]
319 320 321
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
322
\infer[Eq]
323 324
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
325
\and
326 327 328 329 330 331 332 333 334 335 336 337
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
338
\infer[$\wedge$I]
339 340 341
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
342
\infer[$\wedge$EL]
343 344 345
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
346
\infer[$\wedge$ER]
347 348 349
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
350
\infer[$\vee$IL]
351 352 353
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
354
\infer[$\vee$IR]
355 356 357
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
358 359 360 361 362 363
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
364
\infer[$\Ra$I]
365 366 367
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
368
\infer[$\Ra$E]
369 370 371
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
372 373 374
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
375
\and
376 377 378 379
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
380
\and
381 382 383 384
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
385
\and
386 387 388 389
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
390
\and
391 392 393
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
394
\and
395 396 397 398
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
399

Ralf Jung's avatar
Ralf Jung committed
400
\paragraph{Laws of (affine) bunched implications.}
401 402
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
403 404 405
  \TRUE * \prop &\provesIff& \prop \\
  \prop * \propB &\provesIff& \propB * \prop \\
  (\prop * \propB) * \propC &\provesIff& \prop * (\propB * \propC)
406 407
\end{array}
\and
408
\infer[$*$-mono]
409 410 411
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
412
\and
413
\inferB[$\wand$I-E]
414 415
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
416 417
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
418
\paragraph{Laws for ghosts and physical resources.}
419 420
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
421
\ownGGhost{\melt} * \ownGGhost{\meltB} &\provesIff&  \ownGGhost{\melt \mtimes \meltB} \\
Ralf Jung's avatar
Ralf Jung committed
422
\ownGGhost{\melt} &\provesIff& \mval(\melt) \\
Ralf Jung's avatar
Ralf Jung committed
423
\TRUE &\proves&  \ownGGhost{\munit}
424 425
\end{array}
\and
Ralf Jung's avatar
Ralf Jung committed
426
\and
427
\begin{array}{c}
Ralf Jung's avatar
Ralf Jung committed
428
\ownPhys{\state} * \ownPhys{\state'} \proves \FALSE
429 430 431
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
432
\paragraph{Laws for the later modality.}
433
\begin{mathpar}
434
\infer[$\later$-mono]
435 436 437
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
438 439 440
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
441
\and
442 443 444 445 446
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
447 448
  \later{(\prop \wedge \propB)} &\provesIff& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\provesIff& \later{\prop} \vee \later{\propB} \\
449 450
\end{array}
\and
451
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
452 453 454
  \later{\All x.\prop} &\provesIff& \All x. \later\prop \\
  \Exists x. \later\prop &\proves& \later{\Exists x.\prop}  \\
  \later{(\prop * \propB)} &\provesIff& \later\prop * \later\propB
455 456 457
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
458 459 460 461 462 463 464 465 466
\begin{mathpar}
\infer
{\text{$\term$ or $\term'$ is a discrete COFE element}}
{\timeless{\term =_\type \term'}}

\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\ownGGhost\melt}}

Ralf Jung's avatar
Ralf Jung committed
467 468 469 470
\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\mval(\melt)}}

Ralf Jung's avatar
Ralf Jung committed
471
\infer{}
Ralf Jung's avatar
Ralf Jung committed
472
{\timeless{\ownPhys\state}}
Ralf Jung's avatar
Ralf Jung committed
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \Ra \propB}}

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \wand \propB}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\All\var:\type.\prop}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\Exists\var:\type.\prop}}
\end{mathpar}


Ralf Jung's avatar
Ralf Jung committed
492
\paragraph{Laws for the always modality.}
493
\begin{mathpar}
494
\infer[$\always$I]
495 496 497
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
498
\infer[$\always$E]{}
Ralf Jung's avatar
Ralf Jung committed
499
  {\always{\prop} \proves \prop}
500 501
\and
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
502 503 504
  \always{(\prop * \propB)} &\proves& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\proves& \always{\prop} \land \propB \\
  \always{\later\prop} &\provesIff& \later\always{\prop} \\
505 506
\end{array}
\and
507
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
508 509 510 511
  \always{(\prop \land \propB)} &\provesIff& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\provesIff& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\provesIff& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\provesIff& \Exists x. \always{\prop} \\
512
\end{array}
Ralf Jung's avatar
Ralf Jung committed
513
\and
Ralf Jung's avatar
Ralf Jung committed
514
{ \term =_\type \term' \proves \always \term =_\type \term'}
Ralf Jung's avatar
Ralf Jung committed
515
\and
Ralf Jung's avatar
Ralf Jung committed
516
{ \knowInv\iname\prop \proves \always \knowInv\iname\prop}
Ralf Jung's avatar
Ralf Jung committed
517
\and
Ralf Jung's avatar
Ralf Jung committed
518
{ \ownGGhost{\mcore\melt} \proves \always \ownGGhost{\mcore\melt}}
519 520
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
521
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_f][\mask_2 \uplus \mask_f] \prop}

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

Ralf Jung's avatar
Ralf Jung committed
544
\inferH{pvs-allocI}
Ralf Jung's avatar
Ralf Jung committed
545 546 547
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

Ralf Jung's avatar
Ralf Jung committed
548
\inferH{pvs-openI}
Ralf Jung's avatar
Ralf Jung committed
549 550
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

Ralf Jung's avatar
Ralf Jung committed
551
\inferH{pvs-closeI}
Ralf Jung's avatar
Ralf Jung committed
552 553
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

Ralf Jung's avatar
Ralf Jung committed
554
\inferH{pvs-update}
Ralf Jung's avatar
Ralf Jung committed
555 556 557
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
558

Ralf Jung's avatar
Ralf Jung committed
559
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
560 561
\begin{mathpar}
\infer[wp-value]
562
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
563 564

\infer[wp-mono]
565
{\mask_1 \subseteq \mask_2 \and \var:\textlog{val}\mid\prop \proves \propB}
566
{\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
Ralf Jung's avatar
Ralf Jung committed
567 568

\infer[pvs-wp]
569
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
570 571

\infer[wp-pvs]
572
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
573 574 575

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
576 577
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
578 579

\infer[wp-frame]
580
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
581 582 583

\infer[wp-frame-step]
{\toval(\expr) = \bot}
584
{\later\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
585 586 587

\infer[wp-bind]
{\text{$\lctx$ is a context}}
588
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
Ralf Jung's avatar
Ralf Jung committed
589
\end{mathpar}
590

Ralf Jung's avatar
Ralf Jung committed
591 592
\paragraph{Lifting of operational semantics.}~
\begin{mathpar}
Ralf Jung's avatar
Ralf Jung committed
593 594 595 596
  \infer[wp-lift-step]
  {\mask_2 \subseteq \mask_1 \and
   \toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
597 598 599 600
   \All \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \pred(\expr_2,\state_2,\expr_f)}
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
        ~~\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_f. \pred(\expr_2, \state_2, \expr_f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
      \end{inbox}} }
Ralf Jung's avatar
Ralf Jung committed
601 602 603 604

  \infer[wp-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
605 606
   \All \state_1, \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_f)}
  {\later\All \expr_2, \expr_f. \pred(\expr_2, \expr_f)  \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
607
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
608

Ralf Jung's avatar
Ralf Jung committed
609
Here we define $\wpre{\expr_f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
610 611 612

\subsection{Adequacy}

Ralf Jung's avatar
Ralf Jung committed
613
The adequacy statement concerning functional correctness reads as follows:
614
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
615
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
616
 \\&(\All n. \melt \in \mval_n) \Ra
617
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
Ralf Jung's avatar
Ralf Jung committed
618 619
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
620 621
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
622
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
623

Ralf Jung's avatar
Ralf Jung committed
624 625 626 627 628 629 630 631 632 633 634
Furthermore, the following adequacy statement shows that our weakest preconditions imply that the execution never gets \emph{stuck}: Every expression in the thread pool either is a value, or can reduce further.
\begin{align*}
 &\All \mask, \expr, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
     \\&\All\expr'\in\tpool'. \toval(\expr) \neq \bot \lor \red(\expr, \state')
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




660 661 662 663
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: