derived.tex 24.9 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Derived proof rules and other constructions}
2

Ralf Jung's avatar
Ralf Jung committed
3 4 5 6 7
We will below abuse notation, using the \emph{term} meta-variables like $\val$ to range over (bound) \emph{variables} of the corresponding type..
We omit type annotations in binders and equality, when the type is clear from context.
We assume that the signature $\Sig$ embeds all the meta-level concepts we use, and their properties, into the logic.
(The Coq formalization is a \emph{shallow embedding} of the logic, so we have direct access to all meta-level notions within the logic anyways.)

8 9
\subsection{Base logic}

Ralf Jung's avatar
Ralf Jung committed
10 11 12 13 14 15
We collect here some important and frequently used derived proof rules.
\begin{mathparpagebreakable}
  \infer{}
  {\prop \Ra \propB \proves \prop \wand \propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
16
  {\prop * \Exists\var.\propB \provesIff \Exists\var. \prop * \propB}
Ralf Jung's avatar
Ralf Jung committed
17 18 19 20 21

  \infer{}
  {\prop * \Exists\var.\propB \proves \Exists\var. \prop * \propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
22
  {\always(\prop*\propB) \provesIff \always\prop * \always\propB}
Ralf Jung's avatar
Ralf Jung committed
23 24 25 26 27 28 29 30

  \infer{}
  {\always(\prop \Ra \propB) \proves \always\prop \Ra \always\propB}

  \infer{}
  {\always(\prop \wand \propB) \proves \always\prop \wand \always\propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
31
  {\always(\prop \wand \propB) \provesIff \always(\prop \Ra \propB)}
Ralf Jung's avatar
Ralf Jung committed
32 33 34 35 36 37 38 39 40 41 42

  \infer{}
  {\later(\prop \Ra \propB) \proves \later\prop \Ra \later\propB}

  \infer{}
  {\later(\prop \wand \propB) \proves \later\prop \wand \later\propB}

  \infer
  {\pfctx, \later\prop \proves \prop}
  {\pfctx \proves \prop}
\end{mathparpagebreakable}
43

44 45 46 47 48 49
\paragraph{Persistent assertions.}
\begin{defn}
  An assertion $\prop$ is \emph{persistent} if $\prop \proves \always\prop$.
\end{defn}

Of course, $\always\prop$ is persistent for any $\prop$.
Ralf Jung's avatar
Ralf Jung committed
50
Furthermore, by the proof rules given above, $t = t'$ as well as $\ownGGhost{\mcore\melt}$ and $\knowInv\iname\prop$ are persistent.
51 52 53 54
Persistence is preserved by conjunction, disjunction, separating conjunction as well as universal and existential quantification.

In our proofs, we will implicitly add and remove $\always$ from persistent assertions as necessary, and generally treat them like normal, non-linear assumptions.

Ralf Jung's avatar
Ralf Jung committed
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
\paragraph{Timeless assertions.}

We can show that the following additional closure properties hold for timeless assertions:

\begin{mathparpagebreakable}
  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \land \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \lor \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop * \propB}}

  \infer
  {\vctx \proves \timeless{\prop}}
  {\vctx \proves \timeless{\always\prop}}
\end{mathparpagebreakable}


78 79
\subsection{Program logic}

Ralf Jung's avatar
Ralf Jung committed
80
Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive view shifts, respectively:
81
\[
82
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \wpre{\expr}[\mask]{\lambda\Ret\val.\propB})}
83 84 85 86 87 88
\qquad\qquad
\begin{aligned}
\prop \vs[\mask_1][\mask_2] \propB &\eqdef \always{(\prop \Ra \pvs[\mask_1][\mask_2] {\propB})} \\
\prop \vsE[\mask_1][\mask_2] \propB &\eqdef \prop \vs[\mask_1][\mask_2] \propB \land \propB \vs[\mask2][\mask_1] \prop
\end{aligned}
\]
Ralf Jung's avatar
Ralf Jung committed
89
We write just one mask for a view shift when $\mask_1 = \mask_2$.
90 91
Clearly, all of these assertions are persistent.
The convention for omitted masks is similar to the base logic:
Ralf Jung's avatar
Ralf Jung committed
92 93 94
An omitted $\mask$ is $\top$ for Hoare triples and $\emptyset$ for view shifts.


Ralf Jung's avatar
Ralf Jung committed
95
\paragraph{View shifts.}
96
The following rules can be derived for view shifts.
Ralf Jung's avatar
Ralf Jung committed
97

98 99
\begin{mathparpagebreakable}
\inferH{vs-update}
Ralf Jung's avatar
Ralf Jung committed
100 101 102
  {\melt \mupd \meltsB}
  {\ownGGhost{\melt} \vs \exists \meltB \in \meltsB.\; \ownGGhost{\meltB}}
\and
103
\inferH{vs-trans}
Ralf Jung's avatar
Ralf Jung committed
104 105 106
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC \and \mask_2 \subseteq \mask_1 \cup \mask_3}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
107
\inferH{vs-imp}
Ralf Jung's avatar
Ralf Jung committed
108 109 110
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
111
\inferH{vs-mask-frame}
Ralf Jung's avatar
Ralf Jung committed
112
  {\prop \vs[\mask_1][\mask_2] \propB}
113
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
Ralf Jung's avatar
Ralf Jung committed
114
\and
115 116 117 118 119
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
Ralf Jung's avatar
Ralf Jung committed
120 121 122
  {\timeless{\prop}}
  {\later \prop \vs \prop}
\and
123 124 125 126 127
\inferH{vs-allocI}
  {\infinite(\mask)}
  {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
\and
\axiomH{vs-openI}
Ralf Jung's avatar
Ralf Jung committed
128 129
  {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
\and
130
\axiomH{vs-closeI}
Ralf Jung's avatar
Ralf Jung committed
131 132
  {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }

133
\inferHB{vs-disj}
Ralf Jung's avatar
Ralf Jung committed
134 135 136
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
137
\inferHB{vs-exist}
Ralf Jung's avatar
Ralf Jung committed
138 139 140
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
141
\inferHB{vs-box}
Ralf Jung's avatar
Ralf Jung committed
142
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
Ralf Jung's avatar
Ralf Jung committed
143 144
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
145
\inferH{vs-false}
Ralf Jung's avatar
Ralf Jung committed
146 147
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
148
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
149 150


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
\paragraph{Hoare triples.}
The following rules can be derived for Hoare triples.

\begin{mathparpagebreakable}
\inferH{Ht-ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Ht-bind}
  {\text{$\lctx$ is a context} \and \hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{\lctx(\val)}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{\lctx(\expr)}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Ht-csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferH{Ht-mask-weaken}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask \uplus \mask']}
\\\\
\inferH{Ht-frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
\inferH{Ht-frame-step}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \toval(\expr) = \bot}
  {\hoare{\prop * \later\propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
\inferH{Ht-atomic}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
Ralf Jung's avatar
Ralf Jung committed
187
  }
188
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
Ralf Jung's avatar
Ralf Jung committed
189
\and
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
\inferHB{Ht-disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{Ht-exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{Ht-box}
  {\always\propB \proves \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferH{Ht-false}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
206

Ralf Jung's avatar
Ralf Jung committed
207
\paragraph{Lifting of operational semantics.}
Ralf Jung's avatar
Ralf Jung committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
We can derive some specialized forms of the lifting axioms for the operational semantics.
\begin{mathparpagebreakable}
  \infer[wp-lift-atomic-step]
  {\toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
   \All \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \Exists\val_2. \toval(\expr_2) = \val_2 \land \pred(\val_2,\state_2,\expr_f)}
  {\later\ownPhys{\state_1} * \later\All \val, \state_2, \expr_f. \pred(\val, \state_2, \expr_f) \land \ownPhys{\state_2} \wand \prop * \wpre{\expr_f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\val.\prop}}

  \infer[wp-lift-atomic-det-step]
  {\toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
   \All \expr'_2, \state'_2, \expr_f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \state_2 = \state_2' \land \toval(\expr_2') = \val_2 \land \expr_f = \expr_f'}
  {\later\ownPhys{\state_1} * \later(\ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}

  \infer[wp-lift-pure-det-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
   \All \state_1, \expr_2', \state_2, \expr_f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_f = \expr_f'}
  {\later ( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
228

Ralf Jung's avatar
Ralf Jung committed
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
Furthermore, we derive some forms that directly involve view shifts and Hoare triples.
\begin{mathparpagebreakable}
  \infer[ht-lift-step]
  {\mask_2 \subseteq \mask_1 \and
   \toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
   \All \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \pred(\expr_2,\state_2,\expr_f) \\\\
   \prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
   \All \expr_2, \state_2, \expr_f. \pred(\expr_2, \state_2, \expr_f) * \ownPhys{\state_2} * \prop' \vs[\mask_2][\mask_1] \propB_1 * \propB_2 \\\\
   \All \expr_2, \state_2, \expr_f. \hoare{\propB_1}{\expr_2}{\Ret\val.\propC}[\mask_1] \and
   \All \expr_2, \state_2, \expr_f. \hoare{\propB_2}{\expr_f}{\Ret\any. \TRUE}[\top]}
  { \hoare\prop{\expr_1}{\Ret\val.\propC}[\mask_1] }

  \infer[ht-lift-atomic-step]
  {\atomic(\expr_1) \and
   \red(\expr_1, \state_1) \and
   \All \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \pred(\expr_2,\state_2,\expr_f) \\\\
   \prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
   \All \expr_2, \state_2, \expr_f. \hoare{\pred(\expr_2,\state_2,\expr_f) * \prop}{\expr_f}{\Ret\any. \TRUE}[\top]}
  { \hoare{\later\ownPhys{\state_1} * \later\prop}{\expr_1}{\Ret\val.\Exists \state_2, \expr_f. \ownPhys{\state_2} * \pred(\ofval(\expr_2),\state_2,\expr_f)}[\mask_1] }

  \infer[ht-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All\state_1. \red(\expr_1, \state_1) \and
   \All \state_1, \expr_2, \state_2, \expr_f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_f) \\\\
   \All \expr_2, \expr_f. \hoare{\pred(\expr_2,\expr_f) * \prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
   \All \expr_2, \expr_f. \hoare{\pred(\expr_2,\expr_f) * \prop'}{\expr_f}{\Ret\any. \TRUE}[\top]}
  { \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }

  \infer[ht-lift-pure-det-step]
  {\toval(\expr_1) = \bot \and
   \All\state_1. \red(\expr_1, \state_1) \and
   \All \state_1, \expr_2', \state_2, \expr_f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_f = \expr_f' \\\\
   \hoare{\prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
   \hoare{\prop'}{\expr_f}{\Ret\any. \TRUE}[\top]}
  { \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
266

Ralf Jung's avatar
Ralf Jung committed
267
\subsection{Global functor and ghost ownership}
Ralf Jung's avatar
Ralf Jung committed
268 269

Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from a family of functors $(F_i)_{i \in I}$ for some finite $I$ by picking
270 271
\[ F(\cofe) \eqdef \prod_{i \in I} \textlog{GhName} \fpfn F_i(\cofe) \]
We don't care so much about what concretely $\textlog{GhName}$ is, as long as it is countable and infinite.
Ralf Jung's avatar
Ralf Jung committed
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
With $M_i \eqdef F_i(\iProp)$, we write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownGGhost{[i \mapsto [\gname \mapsto \melt]]}$.
In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the ``ghost location'' $\gname$ is allocated and we own piece $\melt$.

From~\ruleref{pvs-update}, \ruleref{vs-update} and the frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfnm}, we have the following derived rules.
\begin{mathparpagebreakable}
  \inferH{NewGhostStrong}{\text{$G$ infinite}}
  {  \TRUE \vs \Exists\gname\in G. \ownGhost\gname{\melt : M_i}
  }
  \and
  \axiomH{NewGhost}{
    \TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i}
  }
  \and
  \inferH{GhostUpd}
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}
  \and
  \axiomH{GhostEq}
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}}

  \axiomH{GhostVal}
    {\ownGhost\gname{\melt : M_i} \Ra \mval_{M_i}(\melt)}

  \inferH{GhostTimeless}
    {\text{$\melt$ is a discrete COFE element}}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathparpagebreakable}
299

Ralf Jung's avatar
Ralf Jung committed
300
\subsection{Invariant identifier namespaces}
301 302 303 304 305 306 307

Let $\namesp \ni \textlog{InvNamesp} \eqdef \textlog{list}(\textlog{InvName})$ be the type of \emph{namespaces} for invariant names.
Notice that there is an injection $\textlog{namesp\_inj}: \textlog{InvNamesp} \ra \textlog{InvName}$.
Whenever needed (in particular, for masks at view shifts and Hoare triples), we coerce $\namesp$ to its suffix-closure: \[\namecl\namesp \eqdef \setComp{\iname}{\Exists \namesp'. \iname = \textlog{namesp\_inj}(\namesp' \dplus \namesp)}\]
We use the notation $\namesp.\iname$ for the namespace $[\iname] \dplus \namesp$.

We define the inclusion relation on namespaces as $\namesp_1 \sqsubseteq \namesp_2 \Lra \Exists \namesp_3. \namesp_2 = \namesp_3 \dplus \namesp_1$, \ie $\namesp_1$ is a suffix of $\namesp_2$.
Ralf Jung's avatar
Ralf Jung committed
308
We have that $\namesp_1 \sqsubseteq \namesp_2 \Ra \namecl{\namesp_2} \subseteq \namecl{\namesp_1}$.
309 310

Similarly, we define $\namesp_1 \sep \namesp_2 \eqdef   \Exists \namesp_1', \namesp_2'. \namesp_1' \sqsubseteq \namesp_1 \land \namesp_2' \sqsubseteq \namesp_2 \land |\namesp_1'| = |\namesp_2'| \land \namesp_1' \neq \namesp_2'$, \ie there exists a distinguishing suffix.
Ralf Jung's avatar
Ralf Jung committed
311
We have that $\namesp_1 \sep \namesp_2 \Ra \namecl{\namesp_2} \sep \namecl{\namesp_1}$, and furthermore $\iname_1 \neq \iname_2 \Ra \namesp.\iname_1 \sep \namesp.\iname_2$.
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
We will overload the usual Iris notation for invariant assertions in the following:
\[ \knowInv\namesp\prop \eqdef \Exists \iname \in \namecl\namesp. \knowInv\iname{\prop} \]
We can now derive the following rules for this derived form of the invariant assertion:
\begin{mathpar}
  \axiom{\knowInv\namesp\prop \proves \always\knowInv\namesp\prop}

  \axiom{\later\prop \proves \pvs[\namesp] \knowInv\namesp\prop}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \wpre\expr[\mask \setminus \namesp]{\Ret\val.\later\prop * \propB}}
  {\pfctx \proves \wpre\expr[\mask]{\Ret\val.\propB}}

  \infer{\namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \pvs[\mask \setminus \namesp]{\later\prop * \propB}}
  {\pfctx \proves \pvs[\mask]{\propB}}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \hoare{\later\prop*\propB}\expr{\Ret\val.\later\prop*\propC}[\mask \setminus \namesp]}
  {\knowInv\namesp\prop \proves \hoare\propB\expr{\Ret\val.\propC}[\mask]}

  \infer{\namesp \subseteq \mask \and
    \later\prop*\propB \vs[\mask \setminus \namesp] \later\prop*\propC}
  {\knowInv\namesp\prop \proves \propB \vs[\mask] \propC}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
% \subsection{STSs with interpretation}\label{sec:stsinterp}

% Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

% An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
% \begin{align*}
%   \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
%   \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
% \end{align*}

% We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
% \begin{mathpar}
%  \inferH{NewSts}
%   {\infinite(\mask)}
%   {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
%  \and
%  \axiomH{StsOpen}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
%  \and
%  \axiomH{StsClose}
%   {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
% \end{mathpar}
% \begin{proof}
% \ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

% \ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

% \ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
% \end{proof}
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
% Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
% \begin{mathpar}
%  \inferH{Sts}
%   {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
%    \and \physatomic{\expr}}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSSts}
%   {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
%  We have to show
%  \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
%  where $\val$, $s'$, $T'$ are free in $Q$.
386
 
387 388
%  First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
%  \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]
389

390 391 392
%  Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
%  It remains to show:
%  \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
393
 
394 395
%  Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
%  \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
396
 
397
%  This holds by our premise.
Ralf Jung's avatar
Ralf Jung committed
398
% \end{proof}
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
% % \begin{proof}[Proof of \ruleref{VSSts}]
% % This is similar to above, so we only give the proof in short notation:

% % \hproof{%
% % 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% % 	\pline[\mask_1 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s_0, T)} * P
% % 	} \\
% % 	\pline[\mask_1]{%
% % 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% % 	} \qquad by \ruleref{StsOpen} \\
% % 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% % 	\pline[\mask_2]{%
% % 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% % 	} \qquad by premiss \\
% % 	Context: $(s, T) \ststrans (s', T')$ \\
% % 	\pline[\mask_2 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s', T')} * Q(s', T')
% % 	} \qquad by \ruleref{StsClose}
% % }
% % \end{proof}

% \subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

% Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

% Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
% Now define
% \begin{align*}
%   \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
%   \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
% \end{align*}

% The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
% \begin{mathpar}
%  \inferH{NewAuth}
%   {\infinite(\mask) \and M~\textlog{cancellative}}
%   {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
%  \and
%  \axiomH{AuthOpen}
%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_f.\; \later\pred_\bot(\melt \mtimes \melt_f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_f, \authfrag a:\auth{M}}}
%  \and
%  \axiomH{AuthClose}
%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_f) * \ownGhost{\gname}{\authfull a \mtimes \melt_f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
% \end{mathpar}

% These view shifts in turn can be used to prove variants of the invariant rules:
% \begin{mathpar}
%  \inferH{Auth}
%   {\forall \melt_f.\; \hoare{\later\pred_\bot(a \mtimes \melt_f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_f) * Q}[\mask]
%    \and \physatomic{\expr}}
%   {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSAuth}
%   {\forall \melt_f.\; \later\pred_\bot(a \mtimes \melt_f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_f) * Q(\meltB)}
%   {\Auth(M, \pred, \gname, \iname) \vdash
%    \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
%    \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
% \end{mathpar}


% \subsection{Ghost heap}
% \label{sec:ghostheap}%
Ralf Jung's avatar
Ralf Jung committed
463
% FIXME use the finmap provided by the global ghost ownership, instead of adding our own
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
% We define a simple ghost heap with fractional permissions.
% Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
% In such cases we use these ghost heaps.

% We seek to implement the following interface:
% \newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
% \begin{align*}
%  \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
%   & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
%   &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
%   & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
%   & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
% \end{align*}
% We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
% Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

% To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\textdom{Val})$ and define
% \[
% 	x \fgmapsto[q] v \eqdef
% 	  \begin{cases}
%     	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
%     	\FALSE & \text{otherwise}
%     \end{cases}
% \]
% The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
% The first implication is immediate from the definition.
% The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.
491

Ralf Jung's avatar
Ralf Jung committed
492 493 494 495 496

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: