logic.tex 24.1 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
8 9
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{\bot})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, \bot$. \\
Ralf Jung's avatar
Ralf Jung committed
10
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr_\f$ is forked off.
Ralf Jung's avatar
Ralf Jung committed
11 12
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
13 14
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
15 16
\begin{defn}
  An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
Ralf Jung's avatar
Ralf Jung committed
17
  \[ \Exists \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \]
Ralf Jung's avatar
Ralf Jung committed
18 19
\end{defn}

20 21 22 23 24
\begin{defn}
  An expression $\expr$ is said to be \emph{atomic} if it reduces in one step to a value:
  \[ \All\state_1, \expr_2, \state_2, \expr_\f. \expr, \state_1 \step \expr_2, \state_2, \expr_\f \Ra \Exists \val_2. \toval(\expr_2) = \val_2 \]
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
25
\begin{defn}[Context]
26
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
27
  \begin{enumerate}[itemsep=0pt]
28 29 30
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
Ralf Jung's avatar
Ralf Jung committed
31
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr_\f. \expr_1, \state_1 \step \expr_2,\state_2,\expr_\f \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr_\f $
32
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
Ralf Jung's avatar
Ralf Jung committed
33
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr_\f. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr_\f \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr_\f $
34
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
35 36
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
37
\subsection{Concurrent language}
Ralf Jung's avatar
Ralf Jung committed
38 39

For any language $\Lang$, we define the corresponding thread-pool semantics.
40 41 42

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
43
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
44 45
\]

Ralf Jung's avatar
Ralf Jung committed
46
\judgment[Machine reduction]{\cfg{\tpool}{\state} \step
Ralf Jung's avatar
Ralf Jung committed
47
  \cfg{\tpool'}{\state'}}
48 49
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
50
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f \and \expr_\f \neq \bot}
Ralf Jung's avatar
Ralf Jung committed
51
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
Ralf Jung's avatar
Ralf Jung committed
52
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr_\f]}{\state'}}
Ralf Jung's avatar
Ralf Jung committed
53 54 55 56
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
57 58
\end{mathpar}

59
\clearpage
Ralf Jung's avatar
Ralf Jung committed
60
\section{Logic}
Ralf Jung's avatar
Ralf Jung committed
61 62 63

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
64 65
\item A language $\Lang$, and
\item a locally contractive bifunctor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state, such that for all COFEs $A$, the CMRA $\iFunc(A)$ has a unit. (By \lemref{lem:cmra-unit-total-core}, this means that the core of $\iFunc(A)$ is a total function.)
Ralf Jung's avatar
Ralf Jung committed
66
\end{itemize}
67

Ralf Jung's avatar
Ralf Jung committed
68 69 70
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
71
\[
72
	\SigType \supseteq \{ \textlog{Val}, \textlog{Expr}, \textlog{State}, \textlog{M}, \textlog{InvName}, \textlog{InvMask}, \Prop \}
73
\]
Ralf Jung's avatar
Ralf Jung committed
74 75 76
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
77 78 79 80 81
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
82 83 84 85 86 87

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
88 89

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
90
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
91

92
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
93
  \type \bnfdef{}&
Ralf Jung's avatar
Ralf Jung committed
94
      \sigtype \mid
95
      1 \mid
Ralf Jung's avatar
Ralf Jung committed
96 97 98
      \type \times \type \mid
      \type \to \type
\\[0.4em]
Ralf Jung's avatar
Ralf Jung committed
99
  \term, \prop, \pred \bnfdef{}&
100
      \var \mid
101
      \sigfn(\term_1, \dots, \term_n) \mid
102
      () \mid
103 104
      (\term, \term) \mid
      \pi_i\; \term \mid
105
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
106
      \term(\term)  \mid
107
      \munit \mid
Ralf Jung's avatar
Ralf Jung committed
108
      \mcore\term \mid
109 110 111 112
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
113
    \term =_\type \term \mid
114 115 116 117 118 119
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
Ralf Jung's avatar
Ralf Jung committed
120
    \MU \var:\type. \term  \mid
Ralf Jung's avatar
Ralf Jung committed
121 122
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
123 124
\\&
    \knowInv{\term}{\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
125
    \ownGGhost{\term} \mid \mval(\term) \mid
126 127 128
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
129
    \pvs[\term][\term] \prop\mid
130
    \wpre{\term}[\term]{\Ret\var.\term}
131
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
132
Recursive predicates must be \emph{guarded}: in $\MU \var. \term$, the variable $\var$ can only appear under the later $\later$ modality.
133

134
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
135
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
136
If we omit the mask, then it is $\top$ for weakest precondition $\wpre\expr{\Ret\var.\prop}$ and $\emptyset$ for primitive view shifts $\pvs \prop$.
137
%FIXME $\top$ is not a term in the logic. Neither is any of the operations on masks that we use in the rules for weakestpre.
138

Ralf Jung's avatar
Ralf Jung committed
139
Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
140
This is a \emph{meta-level} assertion about propositions, defined as follows:
Ralf Jung's avatar
Ralf Jung committed
141 142 143

\[ \vctx \proves \timeless{\prop} \eqdef \vctx\mid\later\prop \proves \prop \lor \later\FALSE \]

144

145
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
146
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
147 148
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
149
 \text{metavariable} & \text{type} \\\hline
150
  \term, \termB & \text{arbitrary} \\
151 152 153
  \val, \valB & \textlog{Val} \\
  \expr & \textlog{Expr} \\
  \state & \textlog{State} \\
154 155 156
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
157
 \text{metavariable} & \text{type} \\\hline
158 159 160
  \iname & \textlog{InvName} \\
  \mask & \textlog{InvMask} \\
  \melt, \meltB & \textlog{M} \\
161
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
162
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
163 164 165 166
\end{array}
\]

\paragraph{Variable conventions.}
Ralf Jung's avatar
Ralf Jung committed
167
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
168 169 170 171 172


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
173
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
174

Ralf Jung's avatar
Ralf Jung committed
175 176
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
177

Ralf Jung's avatar
Ralf Jung committed
178
\judgment[Well-typed terms]{\vctx \proves_\Sig \wtt{\term}{\type}}
179 180
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
181
	\axiom{x : \type \proves \wtt{x}{\type}}
182
\and
Ralf Jung's avatar
Ralf Jung committed
183 184
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
185
\and
Ralf Jung's avatar
Ralf Jung committed
186 187
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
188
\and
Ralf Jung's avatar
Ralf Jung committed
189 190
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
191 192 193 194 195 196 197 198 199 200 201
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
202
	\axiom{\vctx \proves \wtt{()}{1}}
203
\and
Ralf Jung's avatar
Ralf Jung committed
204 205
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
206
\and
Ralf Jung's avatar
Ralf Jung committed
207 208
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
209 210
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
211 212
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
213 214
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
215 216
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
217
%%% monoids
218 219
\and
        \infer{}{\vctx \proves \wtt\munit{\textlog{M}}}
220
\and
Ralf Jung's avatar
Ralf Jung committed
221
	\infer{\vctx \proves \wtt\melt{\textlog{M}}}{\vctx \proves \wtt{\mcore\melt}{\textlog{M}}}
222
\and
223 224
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
225 226 227 228 229 230
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
231 232
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
250 251
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
252
	}{
253
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
254 255
	}
\and
Ralf Jung's avatar
Ralf Jung committed
256 257
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
258
\and
Ralf Jung's avatar
Ralf Jung committed
259 260
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
261 262 263
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
264
		\vctx \proves \wtt{\iname}{\textlog{InvName}}
265 266 267 268
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
269
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
270
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
Ralf Jung's avatar
Ralf Jung committed
271 272 273
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
		{\vctx \proves \wtt{\mval(\melt)}{\Prop}}
274
\and
275
	\infer{\vctx \proves \wtt{\state}{\textlog{State}}}
276 277 278 279 280 281 282 283 284 285
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
286 287
		\vctx \proves \wtt{\mask}{\textlog{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textlog{InvMask}}
288
	}{
Ralf Jung's avatar
Ralf Jung committed
289
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
290 291 292
	}
\and
	\infer{
293 294 295
		\vctx \proves \wtt{\expr}{\textlog{Expr}} \and
		\vctx,\var:\textlog{Val} \proves \wtt{\term}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textlog{InvMask}}
296
	}{
297
		\vctx \proves \wtt{\wpre{\expr}[\mask]{\Ret\var.\term}}{\Prop}
298 299 300
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
301
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
302
\label{sec:proof-rules}
Ralf Jung's avatar
Ralf Jung committed
303

304 305
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
306
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Ralf Jung's avatar
Ralf Jung committed
307
Axioms $\vctx \mid \prop \provesIff \propB$ indicate that both $\vctx \mid \prop \proves \propB$ and $\vctx \mid \propB \proves \prop$ can be derived.
308

Ralf Jung's avatar
Ralf Jung committed
309
\judgment{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
310
\paragraph{Laws of intuitionistic higher-order logic with equality.}
311
This is entirely standard.
312 313
\begin{mathparpagebreakable}
\infer[Asm]
314 315 316
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
317
\infer[Eq]
318 319
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
320
\and
321 322 323 324 325 326 327 328 329 330 331 332
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
333
\infer[$\wedge$I]
334 335 336
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
337
\infer[$\wedge$EL]
338 339 340
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
341
\infer[$\wedge$ER]
342 343 344
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
345
\infer[$\vee$IL]
346 347 348
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
349
\infer[$\vee$IR]
350 351 352
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
353 354 355 356 357 358
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
359
\infer[$\Ra$I]
360 361 362
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
363
\infer[$\Ra$E]
364 365 366
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
367 368 369
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
370
\and
371 372 373 374
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
375
\and
376 377 378 379
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
380
\and
381 382 383 384
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
385
\and
386 387 388
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
389
\and
390 391 392 393
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
394

Ralf Jung's avatar
Ralf Jung committed
395
\paragraph{Laws of (affine) bunched implications.}
396 397
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
398 399 400
  \TRUE * \prop &\provesIff& \prop \\
  \prop * \propB &\provesIff& \propB * \prop \\
  (\prop * \propB) * \propC &\provesIff& \prop * (\propB * \propC)
401 402
\end{array}
\and
403
\infer[$*$-mono]
404 405 406
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
407
\and
408
\inferB[$\wand$I-E]
409 410
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
411 412
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
413
\paragraph{Laws for ghosts and physical resources.}
414 415
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
416
\ownGGhost{\melt} * \ownGGhost{\meltB} &\provesIff&  \ownGGhost{\melt \mtimes \meltB} \\
Ralf Jung's avatar
Ralf Jung committed
417
\ownGGhost{\melt} &\provesIff& \mval(\melt) \\
Ralf Jung's avatar
Ralf Jung committed
418
\TRUE &\proves&  \ownGGhost{\munit}
419 420
\end{array}
\and
Ralf Jung's avatar
Ralf Jung committed
421
\and
422
\begin{array}{c}
Ralf Jung's avatar
Ralf Jung committed
423
\ownPhys{\state} * \ownPhys{\state'} \proves \FALSE
424 425 426
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
427
\paragraph{Laws for the later modality.}
428
\begin{mathpar}
429
\infer[$\later$-mono]
430 431 432
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
433 434 435
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
436
\and
437 438 439 440 441
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
442 443
  \later{(\prop \wedge \propB)} &\provesIff& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\provesIff& \later{\prop} \vee \later{\propB} \\
444 445
\end{array}
\and
446
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
447 448 449
  \later{\All x.\prop} &\provesIff& \All x. \later\prop \\
  \Exists x. \later\prop &\proves& \later{\Exists x.\prop}  \\
  \later{(\prop * \propB)} &\provesIff& \later\prop * \later\propB
450 451 452
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
453 454 455 456 457 458 459 460 461
\begin{mathpar}
\infer
{\text{$\term$ or $\term'$ is a discrete COFE element}}
{\timeless{\term =_\type \term'}}

\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\ownGGhost\melt}}

Ralf Jung's avatar
Ralf Jung committed
462 463 464 465
\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\mval(\melt)}}

Ralf Jung's avatar
Ralf Jung committed
466
\infer{}
Ralf Jung's avatar
Ralf Jung committed
467
{\timeless{\ownPhys\state}}
Ralf Jung's avatar
Ralf Jung committed
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \Ra \propB}}

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \wand \propB}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\All\var:\type.\prop}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\Exists\var:\type.\prop}}
\end{mathpar}


Ralf Jung's avatar
Ralf Jung committed
487
\paragraph{Laws for the always modality.}
488
\begin{mathpar}
489
\infer[$\always$I]
490 491 492
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
493
\infer[$\always$E]{}
Ralf Jung's avatar
Ralf Jung committed
494
  {\always{\prop} \proves \prop}
495 496
\and
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
497 498 499
  \always{(\prop * \propB)} &\proves& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\proves& \always{\prop} \land \propB \\
  \always{\later\prop} &\provesIff& \later\always{\prop} \\
500 501
\end{array}
\and
502
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
503 504 505 506
  \always{(\prop \land \propB)} &\provesIff& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\provesIff& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\provesIff& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\provesIff& \Exists x. \always{\prop} \\
507
\end{array}
Ralf Jung's avatar
Ralf Jung committed
508
\and
Ralf Jung's avatar
Ralf Jung committed
509
{ \term =_\type \term' \proves \always \term =_\type \term'}
Ralf Jung's avatar
Ralf Jung committed
510
\and
Ralf Jung's avatar
Ralf Jung committed
511
{ \knowInv\iname\prop \proves \always \knowInv\iname\prop}
Ralf Jung's avatar
Ralf Jung committed
512
\and
Ralf Jung's avatar
Ralf Jung committed
513
{ \ownGGhost{\mcore\melt} \proves \always \ownGGhost{\mcore\melt}}
Ralf Jung's avatar
Ralf Jung committed
514 515
\and
{ \mval(\melt) \proves \always \mval(\melt)}
516 517
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
518
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
Ralf Jung's avatar
Ralf Jung committed
536
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \prop}
Ralf Jung's avatar
Ralf Jung committed
537 538 539 540

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

Ralf Jung's avatar
Ralf Jung committed
541
\inferH{pvs-allocI}
Ralf Jung's avatar
Ralf Jung committed
542 543 544
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

Ralf Jung's avatar
Ralf Jung committed
545
\inferH{pvs-openI}
Ralf Jung's avatar
Ralf Jung committed
546 547
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

Ralf Jung's avatar
Ralf Jung committed
548
\inferH{pvs-closeI}
Ralf Jung's avatar
Ralf Jung committed
549 550
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

Ralf Jung's avatar
Ralf Jung committed
551
\inferH{pvs-update}
Ralf Jung's avatar
Ralf Jung committed
552 553 554
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
555

Ralf Jung's avatar
Ralf Jung committed
556
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
557 558
\begin{mathpar}
\infer[wp-value]
559
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
560 561

\infer[wp-mono]
562
{\mask_1 \subseteq \mask_2 \and \var:\textlog{val}\mid\prop \proves \propB}
563
{\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
Ralf Jung's avatar
Ralf Jung committed
564 565

\infer[pvs-wp]
566
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
567 568

\infer[wp-pvs]
569
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
570 571 572

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
573 574
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
575 576

\infer[wp-frame]
577
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
578 579

\infer[wp-frame-step]
Ralf Jung's avatar
Ralf Jung committed
580 581
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
{\wpre\expr[\mask]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2]\later\pvs[\mask_2][\mask_1]\propB \proves \wpre\expr[\mask \uplus \mask_1]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
582 583 584

\infer[wp-bind]
{\text{$\lctx$ is a context}}
585
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
Ralf Jung's avatar
Ralf Jung committed
586
\end{mathpar}
587

Ralf Jung's avatar
Ralf Jung committed
588 589
\paragraph{Lifting of operational semantics.}~
\begin{mathpar}
Ralf Jung's avatar
Ralf Jung committed
590 591 592 593
  \infer[wp-lift-step]
  {\mask_2 \subseteq \mask_1 \and
   \toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
594
   \All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f)}
Ralf Jung's avatar
Ralf Jung committed
595
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
Ralf Jung's avatar
Ralf Jung committed
596
        ~~\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_\f. \pred(\expr_2, \state_2, \expr_\f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
Ralf Jung's avatar
Ralf Jung committed
597
      \end{inbox}} }
Ralf Jung's avatar
Ralf Jung committed
598 599 600 601

  \infer[wp-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
602 603
   \All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_\f)}
  {\later\All \expr_2, \expr_\f. \pred(\expr_2, \expr_\f)  \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
604
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
605

Ralf Jung's avatar
Ralf Jung committed
606
Here we define $\wpre{\expr_\f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_\f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
607 608 609

\subsection{Adequacy}

Ralf Jung's avatar
Ralf Jung committed
610
The adequacy statement concerning functional correctness reads as follows:
611
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
612
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
613
 \\&(\All n. \melt \in \mval_n) \Ra
614
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
Ralf Jung's avatar
Ralf Jung committed
615 616
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
617 618
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
619
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
620

Ralf Jung's avatar
Ralf Jung committed
621 622 623 624 625 626 627
Furthermore, the following adequacy statement shows that our weakest preconditions imply that the execution never gets \emph{stuck}: Every expression in the thread pool either is a value, or can reduce further.
\begin{align*}
 &\All \mask, \expr, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
628
     \\&\All\expr'\in\tpool'. \toval(\expr') \neq \bot \lor \red(\expr', \state')
Ralf Jung's avatar
Ralf Jung committed
629 630 631
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




657 658 659 660
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: