Require Export algebra.cmra. Require Import algebra.functor. Local Arguments validN _ _ _ !_ /. Local Arguments valid _ _ !_ /. Inductive excl (A : Type) := | Excl : A → excl A | ExclUnit : excl A | ExclBot : excl A. Arguments Excl {_} _. Arguments ExclUnit {_}. Arguments ExclBot {_}. Instance maybe_Excl {A} : Maybe (@Excl A) := λ x, match x with Excl a => Some a | _ => None end. Section excl. Context {A : cofeT}. (* Cofe *) Inductive excl_equiv : Equiv (excl A) := | Excl_equiv (x y : A) : x ≡ y → Excl x ≡ Excl y | ExclUnit_equiv : ExclUnit ≡ ExclUnit | ExclBot_equiv : ExclBot ≡ ExclBot. Existing Instance excl_equiv. Inductive excl_dist `{Dist A} : Dist (excl A) := | excl_dist_0 (x y : excl A) : x ≡{0}≡ y | Excl_dist (x y : A) n : x ≡{n}≡ y → Excl x ≡{n}≡ Excl y | ExclUnit_dist n : ExclUnit ≡{n}≡ ExclUnit | ExclBot_dist n : ExclBot ≡{n}≡ ExclBot. Existing Instance excl_dist. Global Instance Excl_ne : Proper (dist n ==> dist n) (@Excl A). Proof. by constructor. Qed. Global Instance Excl_proper : Proper ((≡) ==> (≡)) (@Excl A). Proof. by constructor. Qed. Global Instance Excl_inj : Injective (≡) (≡) (@Excl A). Proof. by inversion_clear 1. Qed. Global Instance Excl_dist_inj n : Injective (dist n) (dist n) (@Excl A). Proof. by inversion_clear 1. Qed. Program Definition excl_chain (c : chain (excl A)) (x : A) (H : maybe Excl (c 1) = Some x) : chain A := {| chain_car n := match c n return _ with Excl y => y | _ => x end |}. Next Obligation. intros c x ? n i ?; simpl; destruct (c 1) eqn:?; simplify_equality'. destruct (decide (i = 0)) as [->|]. { by replace n with 0 by lia. } feed inversion (chain_cauchy c 1 i); auto with lia congruence. feed inversion (chain_cauchy c n i); simpl; auto with lia congruence. Qed. Instance excl_compl : Compl (excl A) := λ c, match Some_dec (maybe Excl (c 1)) with | inleft (exist x H) => Excl (compl (excl_chain c x H)) | inright _ => c 1 end. Definition excl_cofe_mixin : CofeMixin (excl A). Proof. split. * intros mx my; split; [by destruct 1; constructor; apply equiv_dist|]. intros Hxy; feed inversion (Hxy 1); subst; constructor; apply equiv_dist. by intros n; feed inversion (Hxy n). * intros n; split. + by intros [x| |]; constructor. + by destruct 1; constructor. + destruct 1; inversion_clear 1; constructor; etransitivity; eauto. * by inversion_clear 1; constructor; apply dist_S. * constructor. * intros c n; unfold compl, excl_compl. destruct (decide (n = 0)) as [->|]; [constructor|]. destruct (Some_dec (maybe Excl (c 1))) as [[x Hx]|]. { assert (c 1 = Excl x) by (by destruct (c 1); simplify_equality'). assert (∃ y, c n = Excl y) as [y Hy]. { feed inversion (chain_cauchy c 1 n); try congruence; eauto with lia. } rewrite Hy; constructor. by rewrite (conv_compl (excl_chain c x Hx) n); simpl; rewrite Hy. } feed inversion (chain_cauchy c 1 n); auto with lia; constructor. destruct (c 1); simplify_equality'. Qed. Canonical Structure exclC : cofeT := CofeT excl_cofe_mixin. Global Instance Excl_timeless (x : A) : Timeless x → Timeless (Excl x). Proof. by inversion_clear 2; constructor; apply (timeless _). Qed. Global Instance ExclUnit_timeless : Timeless (@ExclUnit A). Proof. by inversion_clear 1; constructor. Qed. Global Instance ExclBot_timeless : Timeless (@ExclBot A). Proof. by inversion_clear 1; constructor. Qed. Global Instance excl_timeless : (∀ x : A, Timeless x) → ∀ x : excl A, Timeless x. Proof. intros ? []; apply _. Qed. Global Instance excl_leibniz : LeibnizEquiv A → LeibnizEquiv (excl A). Proof. by destruct 2; f_equal; apply leibniz_equiv. Qed. (* CMRA *) Instance excl_validN : ValidN (excl A) := λ n x, match x with Excl _ | ExclUnit => True | ExclBot => n = 0 end. Global Instance excl_empty : Empty (excl A) := ExclUnit. Instance excl_unit : Unit (excl A) := λ _, ∅. Instance excl_op : Op (excl A) := λ x y, match x, y with | Excl x, ExclUnit | ExclUnit, Excl x => Excl x | ExclUnit, ExclUnit => ExclUnit | _, _=> ExclBot end. Instance excl_minus : Minus (excl A) := λ x y, match x, y with | _, ExclUnit => x | Excl _, Excl _ => ExclUnit | _, _ => ExclBot end. Definition excl_cmra_mixin : CMRAMixin (excl A). Proof. split. * by intros n []; destruct 1; constructor. * constructor. * by destruct 1 as [? []| | |]; intros ?. * by destruct 1; inversion_clear 1; constructor. * by intros []. * intros n [?| |]; simpl; auto with lia. * by intros [?| |] [?| |] [?| |]; constructor. * by intros [?| |] [?| |]; constructor. * by intros [?| |]; constructor. * constructor. * by intros n [?| |] [?| |]; exists ∅. * by intros n [?| |] [?| |]. * by intros n [?| |] [?| |] [[?| |] Hz]; inversion_clear Hz; constructor. Qed. Definition excl_cmra_extend_mixin : CMRAExtendMixin (excl A). Proof. intros [|n] x y1 y2 ? Hx; [by exists (x,∅); destruct x|]. by exists match y1, y2 with | Excl a1, Excl a2 => (Excl a1, Excl a2) | ExclBot, _ => (ExclBot, y2) | _, ExclBot => (y1, ExclBot) | ExclUnit, _ => (ExclUnit, x) | _, ExclUnit => (x, ExclUnit) end; destruct y1, y2; inversion_clear Hx; repeat constructor. Qed. Canonical Structure exclRA : cmraT := CMRAT excl_cofe_mixin excl_cmra_mixin excl_cmra_extend_mixin. Global Instance excl_cmra_identity : CMRAIdentity exclRA. Proof. split. done. by intros []. apply _. Qed. Lemma excl_validN_inv_l n x y : ✓{S n} (Excl x ⋅ y) → y = ∅. Proof. by destruct y. Qed. Lemma excl_validN_inv_r n x y : ✓{S n} (x ⋅ Excl y) → x = ∅. Proof. by destruct x. Qed. Lemma Excl_includedN n x y : ✓{n} y → Excl x ≼{n} y ↔ y ≡{n}≡ Excl x. Proof. intros Hvalid; split; [destruct n as [|n]; [done|]|by intros ->]. by intros [z ?]; cofe_subst; rewrite (excl_validN_inv_l n x z). Qed. (* Updates *) Lemma excl_update (x : A) y : ✓ y → Excl x ~~> y. Proof. by destruct y; intros ? [?| |]. Qed. Lemma excl_updateP (P : excl A → Prop) x y : ✓ y → P y → Excl x ~~>: P. Proof. intros ?? z n ?; exists y. by destruct y, z as [?| |]. Qed. End excl. Arguments exclC : clear implicits. Arguments exclRA : clear implicits. (* Functor *) Definition excl_map {A B} (f : A → B) (x : excl A) : excl B := match x with | Excl a => Excl (f a) | ExclUnit => ExclUnit | ExclBot => ExclBot end. Lemma excl_map_id {A} (x : excl A) : excl_map id x = x. Proof. by destruct x. Qed. Lemma excl_map_compose {A B C} (f : A → B) (g : B → C) (x : excl A) : excl_map (g ∘ f) x = excl_map g (excl_map f x). Proof. by destruct x. Qed. Lemma excl_map_ext {A B : cofeT} (f g : A → B) x : (∀ x, f x ≡ g x) → excl_map f x ≡ excl_map g x. Proof. by destruct x; constructor. Qed. Instance excl_map_cmra_ne {A B : cofeT} n : Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@excl_map A B). Proof. by intros f f' Hf; destruct 1; constructor; apply Hf. Qed. Instance excl_map_cmra_monotone {A B : cofeT} (f : A → B) : (∀ n, Proper (dist n ==> dist n) f) → CMRAMonotone (excl_map f). Proof. split. * intros n x y [z Hy]; exists (excl_map f z); rewrite Hy. by destruct x, z; constructor. * by intros n [a| |]. Qed. Definition exclC_map {A B} (f : A -n> B) : exclC A -n> exclC B := CofeMor (excl_map f). Instance exclC_map_ne A B n : Proper (dist n ==> dist n) (@exclC_map A B). Proof. by intros f f' Hf []; constructor; apply Hf. Qed. Program Definition exclF : iFunctor := {| ifunctor_car := exclRA; ifunctor_map := @exclC_map |}. Next Obligation. by intros A x; rewrite /= excl_map_id. Qed. Next Obligation. by intros A B C f g x; rewrite /= excl_map_compose. Qed.