From algebra Require Export sts. From program_logic Require Export invariants ghost_ownership. Import uPred. Class stsG Λ Σ (sts : stsT) := StsG { sts_inG :> inG Λ Σ (stsRA sts); sts_inhabited :> Inhabited (sts.state sts); }. Coercion sts_inG : stsG >-> inG. Definition stsGF (sts : stsT) : iFunctor := constF (stsRA sts). Instance stsGF_inGF sts `{inGF Λ Σ (stsGF sts)} `{Inhabited (sts.state sts)} : stsG Λ Σ sts. Proof. split; try apply _. apply: inGF_inG. Qed. Section definitions. Context `{i : stsG Λ Σ sts} (γ : gname). Import sts. Definition sts_inv (φ : state sts → iPropG Λ Σ) : iPropG Λ Σ := (∃ s, own γ (sts_auth s ∅) ★ φ s)%I. Definition sts_ownS (S : states sts) (T : tokens sts) : iPropG Λ Σ:= own γ (sts_frag S T). Definition sts_own (s : state sts) (T : tokens sts) : iPropG Λ Σ := own γ (sts_frag_up s T). Definition sts_ctx (N : namespace) (φ: state sts → iPropG Λ Σ) : iPropG Λ Σ := inv N (sts_inv φ). End definitions. Instance: Params (@sts_inv) 5. Instance: Params (@sts_ownS) 5. Instance: Params (@sts_own) 6. Instance: Params (@sts_ctx) 6. Section sts. Context `{stsG Λ Σ sts} (φ : sts.state sts → iPropG Λ Σ). Implicit Types N : namespace. Implicit Types P Q R : iPropG Λ Σ. Implicit Types γ : gname. Implicit Types S : sts.states sts. Implicit Types T : sts.tokens sts. (** Setoids *) Global Instance sts_inv_ne n γ : Proper (pointwise_relation _ (dist n) ==> dist n) (sts_inv γ). Proof. by intros φ1 φ2 Hφ; rewrite /sts_inv; setoid_rewrite Hφ. Qed. Global Instance sts_inv_proper γ : Proper (pointwise_relation _ (≡) ==> (≡)) (sts_inv γ). Proof. by intros φ1 φ2 Hφ; rewrite /sts_inv; setoid_rewrite Hφ. Qed. Global Instance sts_ownS_proper γ : Proper ((≡) ==> (≡) ==> (≡)) (sts_ownS γ). Proof. intros S1 S2 HS T1 T2 HT. by rewrite /sts_ownS HS HT. Qed. Global Instance sts_own_proper γ s : Proper ((≡) ==> (≡)) (sts_own γ s). Proof. intros T1 T2 HT. by rewrite /sts_own HT. Qed. Global Instance sts_ctx_ne n γ N : Proper (pointwise_relation _ (dist n) ==> dist n) (sts_ctx γ N). Proof. by intros φ1 φ2 Hφ; rewrite /sts_ctx Hφ. Qed. Global Instance sts_ctx_proper γ N : Proper (pointwise_relation _ (≡) ==> (≡)) (sts_ctx γ N). Proof. by intros φ1 φ2 Hφ; rewrite /sts_ctx Hφ. Qed. (* The same rule as implication does *not* hold, as could be shown using sts_frag_included. *) Lemma sts_ownS_weaken E γ S1 S2 T1 T2 : T2 ⊆ T1 → S1 ⊆ S2 → sts.closed S2 T2 → sts_ownS γ S1 T1 ⊑ (|={E}=> sts_ownS γ S2 T2). Proof. intros ? ? ?. by apply own_update, sts_update_frag. Qed. Lemma sts_own_weaken E γ s S T1 T2 : T2 ⊆ T1 → s ∈ S → sts.closed S T2 → sts_own γ s T1 ⊑ (|={E}=> sts_ownS γ S T2). Proof. intros ???. by apply own_update, sts_update_frag_up. Qed. Lemma sts_ownS_op γ S1 S2 T1 T2 : T1 ∩ T2 ⊆ ∅ → sts.closed S1 T1 → sts.closed S2 T2 → sts_ownS γ (S1 ∩ S2) (T1 ∪ T2) ≡ (sts_ownS γ S1 T1 ★ sts_ownS γ S2 T2)%I. Proof. intros. by rewrite /sts_ownS -own_op sts_op_frag. Qed. Lemma sts_alloc E N s : nclose N ⊆ E → ▷ φ s ⊑ (|={E}=> ∃ γ, sts_ctx γ N φ ∧ sts_own γ s (⊤ ∖ sts.tok s)). Proof. intros HN. eapply sep_elim_True_r. { apply (own_alloc (sts_auth s (⊤ ∖ sts.tok s)) N). apply sts_auth_valid; set_solver. } rewrite pvs_frame_l. rewrite -(pvs_mask_weaken N E) //. apply pvs_strip_pvs. rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ). trans (▷ sts_inv γ φ ★ sts_own γ s (⊤ ∖ sts.tok s))%I. { rewrite /sts_inv -(exist_intro s) later_sep. rewrite [(_ ★ ▷ φ _)%I]comm -assoc. apply sep_mono_r. by rewrite -later_intro -own_op sts_op_auth_frag_up; last set_solver. } rewrite (inv_alloc N) /sts_ctx pvs_frame_r. by rewrite always_and_sep_l. Qed. Lemma sts_opened E γ S T : (▷ sts_inv γ φ ★ sts_ownS γ S T) ⊑ (|={E}=> ∃ s, ■ (s ∈ S) ★ ▷ φ s ★ own γ (sts_auth s T)). Proof. rewrite /sts_inv /sts_ownS later_exist sep_exist_r. apply exist_elim=>s. rewrite later_sep pvs_timeless !pvs_frame_r. apply pvs_mono. rewrite -(exist_intro s). rewrite [(_ ★ ▷φ _)%I]comm -!assoc -own_op -[(▷φ _ ★ _)%I]comm. rewrite own_valid_l discrete_validI. rewrite -!assoc. apply const_elim_sep_l=> Hvalid. assert (s ∈ S) by (by eapply sts_auth_frag_valid_inv, discrete_valid). rewrite const_equiv // left_id comm sts_op_auth_frag //. assert (✓ sts_frag S T) as Hv by by eapply cmra_valid_op_r, discrete_valid. apply (Hv 0). Qed. Lemma sts_closing E γ s T s' T' : sts.steps (s, T) (s', T') → (▷ φ s' ★ own γ (sts_auth s T)) ⊑ (|={E}=> ▷ sts_inv γ φ ★ sts_own γ s' T'). Proof. intros Hstep. rewrite /sts_inv /sts_own -(exist_intro s'). rewrite later_sep [(_ ★ ▷φ _)%I]comm -assoc. rewrite -pvs_frame_l. apply sep_mono_r. rewrite -later_intro. rewrite own_valid_l discrete_validI. apply const_elim_sep_l=>Hval. trans (|={E}=> own γ (sts_auth s' T'))%I. { by apply own_update, sts_update_auth. } by rewrite -own_op sts_op_auth_frag_up. Qed. Context {V} (fsa : FSA Λ (globalF Σ) V) `{!FrameShiftAssertion fsaV fsa}. Lemma sts_fsaS E N P (Ψ : V → iPropG Λ Σ) γ S T : fsaV → nclose N ⊆ E → P ⊑ sts_ctx γ N φ → P ⊑ (sts_ownS γ S T ★ ∀ s, ■ (s ∈ S) ★ ▷ φ s -★ fsa (E ∖ nclose N) (λ x, ∃ s' T', ■ sts.steps (s, T) (s', T') ★ ▷ φ s' ★ (sts_own γ s' T' -★ Ψ x))) → P ⊑ fsa E Ψ. Proof. rewrite /sts_ctx=>? HN Hinv Hinner. eapply (inv_fsa fsa); eauto. rewrite Hinner=>{Hinner Hinv P HN}. apply wand_intro_l. rewrite assoc. rewrite (sts_opened (E ∖ N)) !pvs_frame_r !sep_exist_r. apply (fsa_strip_pvs fsa). apply exist_elim=>s. rewrite (forall_elim s). rewrite [(▷_ ★ _)%I]comm. eapply wand_apply_r; first (by eapply (wand_frame_l (own γ _))); last first. { rewrite assoc [(_ ★ own _ _)%I]comm -assoc. done. } rewrite fsa_frame_l. apply (fsa_mono_pvs fsa)=> x. rewrite sep_exist_l; apply exist_elim=> s'. rewrite sep_exist_l; apply exist_elim=>T'. rewrite comm -!assoc. apply const_elim_sep_l=>-Hstep. rewrite assoc [(_ ★ (_ -★ _))%I]comm -assoc. rewrite (sts_closing (E ∖ N)) //; []. rewrite pvs_frame_l. apply pvs_mono. by rewrite assoc [(_ ★ ▷_)%I]comm -assoc wand_elim_l. Qed. Lemma sts_fsa E N P (Ψ : V → iPropG Λ Σ) γ s0 T : fsaV → nclose N ⊆ E → P ⊑ sts_ctx γ N φ → P ⊑ (sts_own γ s0 T ★ ∀ s, ■ (s ∈ sts.up s0 T) ★ ▷ φ s -★ fsa (E ∖ nclose N) (λ x, ∃ s' T', ■ (sts.steps (s, T) (s', T')) ★ ▷ φ s' ★ (sts_own γ s' T' -★ Ψ x))) → P ⊑ fsa E Ψ. Proof. apply sts_fsaS. Qed. End sts.