Require Export ra. Require Import sets stringmap dra. Local Arguments valid _ _ !_ /. Local Arguments op _ _ !_ !_ /. Local Arguments unit _ _ !_ /. Module sts. Inductive t {A} (R : relation A) (tok : A → stringset) := | auth : A → stringset → t R tok | frag : set A → stringset → t R tok. Arguments auth {_ _ _} _ _. Arguments frag {_ _ _} _ _. Section sts_core. Context {A} (R : relation A) (tok : A → stringset). Inductive sts_equiv : Equiv (t R tok) := | auth_equiv s T1 T2 : T1 = T2 → auth s T1 ≡ auth s T2 | frag_equiv S1 S2 T1 T2 : T1 = T2 → S1 ≡ S2 → frag S1 T1 ≡ frag S2 T2. Global Existing Instance sts_equiv. Inductive step : relation (A * stringset) := | Step s1 s2 T1 T2 : R s1 s2 → tok s1 ∩ T1 = ∅ → tok s2 ∩ T2 = ∅ → tok s1 ∪ T1 = tok s2 ∪ T2 → step (s1,T1) (s2,T2). Hint Resolve Step. Inductive frame_step (T : stringset) (s1 s2 : A) : Prop := | Frame_step T1 T2 : T1 ∩ (tok s1 ∪ T) = ∅ → step (s1,T1) (s2,T2) → frame_step T s1 s2. Hint Resolve Frame_step. Record closed (T : stringset) (S : set A) : Prop := Closed { closed_disjoint s : s ∈ S → tok s ∩ T = ∅; closed_step s1 s2 : s1 ∈ S → frame_step T s1 s2 → s2 ∈ S }. Lemma closed_steps S T s1 s2 : closed T S → s1 ∈ S → rtc (frame_step T) s1 s2 → s2 ∈ S. Proof. induction 3; eauto using closed_step. Qed. Global Instance sts_valid : Valid (t R tok) := λ x, match x with auth s T => tok s ∩ T = ∅ | frag S' T => closed T S' end. Definition up (T : stringset) (s : A) : set A := mkSet (rtc (frame_step T) s). Definition up_set (T : stringset) (S : set A) : set A := S ≫= up T. Global Instance sts_unit : Unit (t R tok) := λ x, match x with | frag S' _ => frag (up_set ∅ S') ∅ | auth s _ => frag (up ∅ s) ∅ end. Inductive sts_disjoint : Disjoint (t R tok) := | frag_frag_disjoint S1 S2 T1 T2 : T1 ∩ T2 = ∅ → frag S1 T1 ⊥ frag S2 T2 | auth_frag_disjoint s S T1 T2 : s ∈ S → T1 ∩ T2 = ∅ → auth s T1 ⊥ frag S T2 | frag_auth_disjoint s S T1 T2 : s ∈ S → T1 ∩ T2 = ∅ → frag S T1 ⊥ auth s T2. Global Existing Instance sts_disjoint. Global Instance sts_op : Op (t R tok) := λ x1 x2, match x1, x2 with | frag S1 T1, frag S2 T2 => frag (S1 ∩ S2) (T1 ∪ T2) | auth s T1, frag _ T2 => auth s (T1 ∪ T2) | frag _ T1, auth s T2 => auth s (T1 ∪ T2) | auth s T1, auth _ T2 => auth s (T1 ∪ T2) (* never happens *) end. Inductive sts_included : Included (t R tok) := | frag_frag_included S1 S2 T1 T2 S' : T1 ⊆ T2 → S2 ≡ S1 ∩ S' → closed (T2 ∖ T1) S' → frag S1 T1 ≼ frag S2 T2 | frag_auth_included s S T1 T2 : s ∈ S → T1 ⊆ T2 → frag S T1 ≼ auth s T2 | auth_auth_included s T1 T2 : T1 ⊆ T2 → auth s T1 ≼ auth s T2. Global Existing Instance sts_included. Global Instance sts_minus : Minus (t R tok) := λ x1 x2, match x1, x2 with | frag S1 T1, frag S2 T2 => frag (up_set (T1 ∖ T2) S1) (T1 ∖ T2) | auth s T1, frag _ T2 => auth s (T1 ∖ T2) | frag _ T2, auth s T1 => auth s (T1 ∖ T2) (* never happens *) | auth s T1, auth _ T2 => frag (up (T1 ∖ T2) s) (T1 ∖ T2) end. Hint Extern 5 (_ ≡ _) => esolve_elem_of : sts. Hint Extern 5 (@eq stringset _ _) => esolve_elem_of : sts. Hint Extern 5 (_ ∈ _) => esolve_elem_of : sts. Hint Extern 5 (_ ⊆ _) => esolve_elem_of : sts. Instance: Equivalence ((≡) : relation (t R tok)). Proof. split. * by intros []; constructor. * by destruct 1; constructor. * destruct 1; inversion_clear 1; constructor; etransitivity; eauto. Qed. Instance closed_proper' T : Proper ((≡) ==> impl) (closed T). Proof. intros ?? HS; destruct 1; constructor; intros until 0; rewrite <-?HS; eauto. Qed. Instance closed_proper T : Proper ((≡) ==> iff) (closed T). Proof. by intros ???; split; apply closed_proper'. Qed. Lemma closed_op T1 T2 S1 S2 : closed T1 S1 → closed T2 S2 → T1 ∩ T2 = ∅ → closed (T1 ∪ T2) (S1 ∩ S2). Proof. intros [? Hstep1] [? Hstep2] ?; split; [esolve_elem_of|]. intros s3 s4; rewrite !elem_of_intersection; intros [??] [T ??]; split. * apply Hstep1 with s3; eauto with sts. * apply Hstep2 with s3; eauto with sts. Qed. Lemma closed_all : closed ∅ set_all. Proof. split; auto with sts. Qed. Hint Resolve closed_all : sts. Instance up_preserving: Proper (flip (⊆) ==> (=) ==> (⊆)) up. Proof. intros T T' HT s ? <-; apply elem_of_subseteq. induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|]. eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts. Qed. Instance up_set_proper T : Proper ((≡) ==> (≡)) (up_set T). Proof. intros S1 S2 HS; unfold up_set; auto with sts. Qed. Lemma elem_of_up s T : s ∈ up T s. Proof. constructor. Qed. Lemma subseteq_up_set S T : S ⊆ up_set T S. Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed. Lemma closed_up_set S T : (∀ s, s ∈ S → tok s ∩ T = ∅) → closed T (up_set T S). Proof. intros HS; unfold up_set; split. * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs'). specialize (HS s' Hs'); clear Hs' S. induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto. inversion_clear Hstep; apply IH; clear IH; auto with sts. * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s. split; [eapply rtc_r|]; eauto. Qed. Lemma closed_up_set_empty S : closed ∅ (up_set ∅ S). Proof. eauto using closed_up_set with sts. Qed. Lemma closed_up s T : tok s ∩ T = ∅ → closed T (up T s). Proof. intros. rewrite <-(collection_bind_singleton _ s). apply closed_up_set; auto with sts. Qed. Lemma closed_up_empty s : closed ∅ (up ∅ s). Proof. eauto using closed_up with sts. Qed. Lemma up_closed S T : closed T S → up_set T S ≡ S. Proof. intros; split; auto using subseteq_up_set; intros s. unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?). induction Hstep; eauto using closed_step. Qed. Lemma up_set_subseteq T1 T2 S1 S2 : closed (T2 ∖ T1) S2 → up_set (T2 ∖ T1) (S1 ∩ S2) ⊆ S2. Proof. intros ? s2; unfold up_set; rewrite elem_of_bind; intros (s1&?&?). apply closed_steps with (T2 ∖ T1) s1; auto with sts. Qed. Global Instance sts_dra : DRA (t R tok). Proof. split. * apply _. * by do 2 destruct 1; constructor; setoid_subst. * by destruct 1; constructor; setoid_subst. * by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst. * by do 2 destruct 1; constructor; setoid_subst. * by do 2 destruct 1; inversion_clear 1; econstructor; setoid_subst. * assert (∀ T T' S s, closed T S → s ∈ S → tok s ∩ T' = ∅ → tok s ∩ (T ∪ T') = ∅). { intros S T T' s [??]; esolve_elem_of. } destruct 3; simpl in *; auto using closed_op with sts. * intros []; simpl; eauto using closed_up, closed_up_set with sts. * destruct 3; simpl in *; setoid_subst; eauto using closed_up with sts. eapply closed_up_set; eauto 2 using closed_disjoint with sts. * intros [] [] []; constructor; rewrite ?(associative_L _); auto with sts. * destruct 4; inversion_clear 1; constructor; auto with sts. * destruct 4; inversion_clear 1; constructor; auto with sts. * destruct 1; constructor; auto with sts. * destruct 3; constructor; auto with sts. * intros []; constructor; auto using elem_of_up with sts. * intros [|S T]; constructor; auto with sts. assert (S ⊆ up_set ∅ S); auto using subseteq_up_set with sts. * intros [s T|S T]; constructor; auto with sts. + by rewrite (up_closed (up _ _)) by auto using closed_up with sts. + by rewrite (up_closed (up_set _ _)) by auto using closed_up_set with sts. * destruct 3 as [S1 S2| |]; simpl; match goal with |- _ ≼ frag ?S _ => apply frag_frag_included with S end; rewrite ?difference_diag_L; eauto using closed_up_empty, closed_up_set_empty; unfold up_set; esolve_elem_of. * destruct 3 as [S1 S2 T1 T2| |]; econstructor; eauto with sts. by replace ((T1 ∪ T2) ∖ T1) with T2 by esolve_elem_of. * destruct 3; constructor; eauto using elem_of_up with sts. * destruct 3 as [S1 S2 T1 T2 S'| |]; constructor; rewrite ?(commutative_L _ (_ ∖ _)), <-?union_difference_L; auto with sts. assert (S2 ⊆ up_set (T2 ∖ T1) S2) by eauto using subseteq_up_set. assert (up_set (T2 ∖ T1) (S1 ∩ S') ⊆ S') by eauto using up_set_subseteq. esolve_elem_of. Qed. Lemma step_closed s1 s2 T1 T2 S Tf : step (s1,T1) (s2,T2) → closed Tf S → s1 ∈ S → T1 ∩ Tf = ∅ → s2 ∈ S ∧ T2 ∩ Tf = ∅ ∧ tok s2 ∩ T2 = ∅. Proof. inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep] ??; split_ands; auto. * eapply Hstep with s1, Frame_step with T1 T2; auto with sts. * clear Hstep Hs1 Hs2; esolve_elem_of. Qed. End sts_core. End sts. Section sts_ra. Context {A} (R : relation A) (tok : A → stringset). Definition sts := validity (valid : sts.t R tok → Prop). Global Instance sts_unit : Unit sts := validity_unit _. Global Instance sts_op : Op sts := validity_op _. Global Instance sts_included : Included sts := validity_included _. Global Instance sts_minus : Minus sts := validity_minus _. Global Instance sts_ra : RA sts := validity_ra _. Definition sts_auth (s : A) (T : stringset) : sts := to_validity (sts.auth s T). Definition sts_frag (S : set A) (T : stringset) : sts := to_validity (sts.frag S T). Lemma sts_update s1 s2 T1 T2 : sts.step R tok (s1,T1) (s2,T2) → sts_auth s1 T1 ⇝ sts_auth s2 T2. Proof. intros ?; apply dra_update; inversion 3 as [|? S ? Tf|]; subst. destruct (sts.step_closed R tok s1 s2 T1 T2 S Tf) as (?&?&?); auto. by repeat constructor. Qed. End sts_ra.