From iris.program_logic Require Export weakestpre. From iris.program_logic Require Import wsat ownership. Local Hint Extern 10 (_ ≤ _) => omega. Local Hint Extern 100 (_ ⊥ _) => set_solver. Local Hint Extern 10 (✓{_} _) => repeat match goal with | H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega end; solve_validN. Section lifting. Context {Λ : language} {Σ : iFunctor}. Implicit Types v : val Λ. Implicit Types e : expr Λ. Implicit Types σ : state Λ. Implicit Types P Q : iProp Λ Σ. Implicit Types Φ : val Λ → iProp Λ Σ. Notation wp_fork ef := (default True ef (flip (wp ⊤) (λ _, True)))%I. Lemma wp_lift_step E1 E2 (φ : expr Λ → state Λ → option (expr Λ) → Prop) Φ e1 σ1 : E2 ⊆ E1 → to_val e1 = None → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → (|={E1,E2}=> ▷ ownP σ1 ★ ▷ ∀ e2 σ2 ef, (■ φ e2 σ2 ef ∧ ownP σ2) -★ |={E2,E1}=> WP e2 @ E1 {{ Φ }} ★ wp_fork ef) ⊢ WP e1 @ E1 {{ Φ }}. Proof. intros ? He Hsafe Hstep. rewrite pvs_eq wp_eq. uPred.unseal; split=> n r ? Hvs; constructor; auto. intros rf k Ef σ1' ???; destruct (Hvs rf (S k) Ef σ1') as (r'&(r1&r2&?&?&Hwp)&Hws); auto; clear Hvs; cofe_subst r'. destruct (wsat_update_pst k (E2 ∪ Ef) σ1 σ1' r1 (r2 ⋅ rf)) as [-> Hws']. { apply equiv_dist. rewrite -(ownP_spec k); auto. } { by rewrite assoc. } constructor; [done|intros e2 σ2 ef ?; specialize (Hws' σ2)]. destruct (λ H1 H2 H3, Hwp e2 σ2 ef k (update_pst σ2 r1) H1 H2 H3 rf k Ef σ2) as (r'&(r1'&r2'&?&?&?)&?); auto; cofe_subst r'. { split. by eapply Hstep. apply ownP_spec; auto. } { rewrite (comm _ r2) -assoc; eauto using wsat_le. } exists r1', r2'; split_and?; try done. by uPred.unseal; intros ? ->. Qed. Lemma wp_lift_pure_step E (φ : expr Λ → option (expr Λ) → Prop) Φ e1 : to_val e1 = None → (∀ σ1, reducible e1 σ1) → (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) → (▷ ∀ e2 ef, ■ φ e2 ef → WP e2 @ E {{ Φ }} ★ wp_fork ef) ⊢ WP e1 @ E {{ Φ }}. Proof. intros He Hsafe Hstep; rewrite wp_eq; uPred.unseal. split=> n r ? Hwp; constructor; auto. intros rf k Ef σ1 ???; split; [done|]. destruct n as [|n]; first lia. intros e2 σ2 ef ?; destruct (Hstep σ1 e2 σ2 ef); auto; subst. destruct (Hwp e2 ef k r) as (r1&r2&Hr&?&?); auto. exists r1,r2; split_and?; try done. - rewrite -Hr; eauto using wsat_le. - uPred.unseal; by intros ? ->. Qed. (** Derived lifting lemmas. *) Import uPred. Lemma wp_lift_atomic_step {E Φ} e1 (φ : expr Λ → state Λ → option (expr Λ) → Prop) σ1 : atomic e1 → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → (▷ ownP σ1 ★ ▷ ∀ v2 σ2 ef, ■ φ (of_val v2) σ2 ef ∧ ownP σ2 -★ Φ v2 ★ wp_fork ef) ⊢ WP e1 @ E {{ Φ }}. Proof. intros. rewrite -(wp_lift_step E E (λ e2 σ2 ef, is_Some (to_val e2) ∧ φ e2 σ2 ef) _ e1 σ1) //; try by (eauto using atomic_not_val, atomic_step). rewrite -pvs_intro. apply sep_mono, later_mono; first done. apply forall_intro=>e2'; apply forall_intro=>σ2'. apply forall_intro=>ef; apply wand_intro_l. rewrite always_and_sep_l -assoc -always_and_sep_l. apply const_elim_l=>-[[v2 Hv] ?] /=. rewrite -pvs_intro. rewrite (forall_elim v2) (forall_elim σ2') (forall_elim ef) const_equiv //. rewrite left_id wand_elim_r -(wp_value _ _ e2' v2) //. by erewrite of_to_val. Qed. Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 ef : atomic e1 → reducible e1 σ1 → (∀ e2' σ2' ef', prim_step e1 σ1 e2' σ2' ef' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') → (▷ ownP σ1 ★ ▷ (ownP σ2 -★ Φ v2 ★ wp_fork ef)) ⊢ WP e1 @ E {{ Φ }}. Proof. intros. rewrite -(wp_lift_atomic_step _ (λ e2' σ2' ef', σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') σ1) //. apply sep_mono, later_mono; first done. apply forall_intro=>e2'; apply forall_intro=>σ2'; apply forall_intro=>ef'. apply wand_intro_l. rewrite always_and_sep_l -assoc -always_and_sep_l to_of_val. apply const_elim_l=>-[-> [[->] ->]] /=. by rewrite wand_elim_r. Qed. Lemma wp_lift_pure_det_step {E Φ} e1 e2 ef : to_val e1 = None → (∀ σ1, reducible e1 σ1) → (∀ σ1 e2' σ2 ef', prim_step e1 σ1 e2' σ2 ef' → σ1 = σ2 ∧ e2 = e2' ∧ ef = ef')→ ▷ (WP e2 @ E {{ Φ }} ★ wp_fork ef) ⊢ WP e1 @ E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_step E (λ e2' ef', e2 = e2' ∧ ef = ef') _ e1) //=. apply later_mono, forall_intro=>e'; apply forall_intro=>ef'. by apply impl_intro_l, const_elim_l=>-[-> ->]. Qed. End lifting.