From program_logic Require Import ownership. From program_logic Require Export pviewshifts invariants ghost_ownership. Import uPred. Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ := (□ (P → pvs E1 E2 Q))%I. Arguments vs {_ _} _ _ _%I _%I. Instance: Params (@vs) 4. Notation "P ={ E1 , E2 }=> Q" := (vs E1 E2 P%I Q%I) (at level 199, E1 at level 1, E2 at level 1, format "P ={ E1 , E2 }=> Q") : uPred_scope. Notation "P ={ E1 , E2 }=> Q" := (True ⊑ vs E1 E2 P%I Q%I) (at level 199, E1 at level 1, E2 at level 1, format "P ={ E1 , E2 }=> Q") : C_scope. Notation "P ={ E }=> Q" := (vs E E P%I Q%I) (at level 199, E at level 1, format "P ={ E }=> Q") : uPred_scope. Notation "P ={ E }=> Q" := (True ⊑ vs E E P%I Q%I) (at level 199, E at level 1, format "P ={ E }=> Q") : C_scope. Section vs. Context {Λ : language} {Σ : iFunctor}. Implicit Types P Q R : iProp Λ Σ. Lemma vs_alt E1 E2 P Q : (P ⊑ pvs E1 E2 Q) → P ={E1,E2}=> Q. Proof. intros; rewrite -{1}always_const. apply (always_intro _ _), impl_intro_l. by rewrite always_const right_id. Qed. Global Instance vs_ne E1 E2 n : Proper (dist n ==> dist n ==> dist n) (@vs Λ Σ E1 E2). Proof. by intros P P' HP Q Q' HQ; rewrite /vs HP HQ. Qed. Global Instance vs_proper E1 E2 : Proper ((≡) ==> (≡) ==> (≡)) (@vs Λ Σ E1 E2). Proof. apply ne_proper_2, _. Qed. Lemma vs_mono E1 E2 P P' Q Q' : P ⊑ P' → Q' ⊑ Q → (P' ={E1,E2}=> Q') ⊑ (P ={E1,E2}=> Q). Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed. Global Instance vs_mono' E1 E2 : Proper (flip (⊑) ==> (⊑) ==> (⊑)) (@vs Λ Σ E1 E2). Proof. by intros until 2; apply vs_mono. Qed. Lemma vs_false_elim E1 E2 P : False ={E1,E2}=> P. Proof. apply vs_alt, False_elim. Qed. Lemma vs_timeless E P : TimelessP P → ▷ P ={E}=> P. Proof. by intros ?; apply vs_alt, pvs_timeless. Qed. Lemma vs_transitive E1 E2 E3 P Q R : E2 ⊆ E1 ∪ E3 → ((P ={E1,E2}=> Q) ∧ (Q ={E2,E3}=> R)) ⊑ (P ={E1,E3}=> R). Proof. intros; rewrite -always_and; apply (always_intro _ _), impl_intro_l. rewrite always_and assoc (always_elim (P → _)) impl_elim_r. by rewrite pvs_impl_r; apply pvs_trans. Qed. Lemma vs_transitive' E P Q R : ((P ={E}=> Q) ∧ (Q ={E}=> R)) ⊑ (P ={E}=> R). Proof. apply vs_transitive; solve_elem_of. Qed. Lemma vs_reflexive E P : P ={E}=> P. Proof. apply vs_alt, pvs_intro. Qed. Lemma vs_impl E P Q : □ (P → Q) ⊑ (P ={E}=> Q). Proof. apply always_intro', impl_intro_l. by rewrite always_elim impl_elim_r -pvs_intro. Qed. Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (R ★ P ={E1,E2}=> R ★ Q). Proof. apply always_intro', impl_intro_l. rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -assoc. by rewrite always_elim wand_elim_r. Qed. Lemma vs_frame_r E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (P ★ R ={E1,E2}=> Q ★ R). Proof. rewrite !(comm _ _ R); apply vs_frame_l. Qed. Lemma vs_mask_frame E1 E2 Ef P Q : Ef ∩ (E1 ∪ E2) = ∅ → (P ={E1,E2}=> Q) ⊑ (P ={E1 ∪ Ef,E2 ∪ Ef}=> Q). Proof. intros ?; apply always_intro', impl_intro_l; rewrite (pvs_mask_frame _ _ Ef)//. by rewrite always_elim impl_elim_r. Qed. Lemma vs_mask_frame' E Ef P Q : Ef ∩ E = ∅ → (P ={E}=> Q) ⊑ (P ={E ∪ Ef}=> Q). Proof. intros; apply vs_mask_frame; solve_elem_of. Qed. Lemma vs_open_close N E P Q R : nclose N ⊆ E → (inv N R ★ (▷ R ★ P ={E ∖ nclose N}=> ▷ R ★ Q)) ⊑ (P ={E}=> Q). Proof. intros; apply (always_intro _ _), impl_intro_l. rewrite always_and_sep_r assoc [(P ★ _)%I]comm -assoc. eapply pvs_open_close; [by eauto with uPred..|]. rewrite sep_elim_r. apply wand_intro_l. (* Oh wow, this is annyoing... *) rewrite assoc -always_and_sep_r'. by rewrite /vs always_elim impl_elim_r. Qed. Lemma vs_alloc (N : namespace) P : ▷ P ={N}=> inv N P. Proof. by intros; apply vs_alt, inv_alloc. Qed. End vs. Section vs_ghost. Context {Λ : language} {Σ : iFunctorG} (i : gid) `{!InG Λ Σ i A}. Implicit Types a : A. Implicit Types P Q R : iPropG Λ Σ. Lemma vs_own_updateP E γ a φ : a ~~>: φ → own i γ a ={E}=> ∃ a', ■ φ a' ∧ own i γ a'. Proof. by intros; apply vs_alt, own_updateP. Qed. Lemma vs_own_updateP_empty `{Empty A, !CMRAIdentity A} E γ φ : ∅ ~~>: φ → True ={E}=> ∃ a', ■ φ a' ∧ own i γ a'. Proof. by intros; eapply vs_alt, own_updateP_empty. Qed. Lemma vs_update E γ a a' : a ~~> a' → own i γ a ={E}=> own i γ a'. Proof. by intros; apply vs_alt, own_update. Qed. End vs_ghost.