From iris.algebra Require Export cmra. From iris.base_logic Require Import base_logic. Local Hint Extern 10 (_ ≤ _) => omega. Record agree (A : Type) : Type := Agree { agree_car : nat → A; agree_is_valid : nat → Prop; agree_valid_S n : agree_is_valid (S n) → agree_is_valid n }. Arguments Agree {_} _ _ _. Arguments agree_car {_} _ _. Arguments agree_is_valid {_} _ _. Section agree. Context {A : ofeT}. Instance agree_validN : ValidN (agree A) := λ n x, agree_is_valid x n ∧ ∀ n', n' ≤ n → agree_car x n ≡{n'}≡ agree_car x n'. Instance agree_valid : Valid (agree A) := λ x, ∀ n, ✓{n} x. Lemma agree_valid_le n n' (x : agree A) : agree_is_valid x n → n' ≤ n → agree_is_valid x n'. Proof. induction 2; eauto using agree_valid_S. Qed. Instance agree_equiv : Equiv (agree A) := λ x y, (∀ n, agree_is_valid x n ↔ agree_is_valid y n) ∧ (∀ n, agree_is_valid x n → agree_car x n ≡{n}≡ agree_car y n). Instance agree_dist : Dist (agree A) := λ n x y, (∀ n', n' ≤ n → agree_is_valid x n' ↔ agree_is_valid y n') ∧ (∀ n', n' ≤ n → agree_is_valid x n' → agree_car x n' ≡{n'}≡ agree_car y n'). Definition agree_ofe_mixin : OfeMixin (agree A). Proof. split. - intros x y; split. + by intros Hxy n; split; intros; apply Hxy. + by intros Hxy; split; intros; apply Hxy with n. - split. + by split. + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy. + intros x y z Hxy Hyz; split; intros n'; intros. * trans (agree_is_valid y n'). by apply Hxy. by apply Hyz. * trans (agree_car y n'). by apply Hxy. by apply Hyz, Hxy. - intros n x y Hxy; split; intros; apply Hxy; auto. Qed. Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin. Program Definition agree_compl : Compl agreeC := λ c, {| agree_car n := agree_car (c n) n; agree_is_valid n := agree_is_valid (c n) n |}. Next Obligation. intros c n ?. apply (chain_cauchy c n (S n)), agree_valid_S; auto. Qed. Global Program Instance agree_cofe : Cofe agreeC := {| compl := agree_compl |}. Next Obligation. intros n c; apply and_wlog_r; intros; symmetry; apply (chain_cauchy c); naive_solver. Qed. Program Instance agree_op : Op (agree A) := λ x y, {| agree_car := agree_car x; agree_is_valid n := agree_is_valid x n ∧ agree_is_valid y n ∧ x ≡{n}≡ y |}. Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed. Instance agree_pcore : PCore (agree A) := Some. Instance: Comm (≡) (@op (agree A) _). Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed. Lemma agree_idemp (x : agree A) : x ⋅ x ≡ x. Proof. split; naive_solver. Qed. Instance: ∀ n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n). Proof. intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?]. rewrite -(proj2 Hxy n') -1?(Hx n'); eauto using agree_valid_le. symmetry. by apply dist_le with n; try apply Hxy. Qed. Instance: ∀ x : agree A, Proper (dist n ==> dist n) (op x). Proof. intros n x y1 y2 [Hy' Hy]; split; [|done]. split; intros (?&?&Hxy); repeat (intro || split); try apply Hy'; eauto using agree_valid_le. - etrans; [apply Hxy|apply Hy]; eauto using agree_valid_le. - etrans; [apply Hxy|symmetry; apply Hy, Hy']; eauto using agree_valid_le. Qed. Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _). Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed. Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _. Instance: Assoc (≡) (@op (agree A) _). Proof. intros x y z; split; simpl; intuition; repeat match goal with H : agree_is_valid _ _ |- _ => clear H end; by cofe_subst; rewrite !agree_idemp. Qed. Lemma agree_included (x y : agree A) : x ≼ y ↔ y ≡ x ⋅ y. Proof. split; [|by intros ?; exists y]. by intros [z Hz]; rewrite Hz assoc agree_idemp. Qed. Lemma agree_op_inv n (x1 x2 : agree A) : ✓{n} (x1 ⋅ x2) → x1 ≡{n}≡ x2. Proof. intros Hxy; apply Hxy. Qed. Lemma agree_valid_includedN n (x y : agree A) : ✓{n} y → x ≼{n} y → x ≡{n}≡ y. Proof. move=> Hval [z Hy]; move: Hval; rewrite Hy. by move=> /agree_op_inv->; rewrite agree_idemp. Qed. Definition agree_cmra_mixin : CMRAMixin (agree A). Proof. apply cmra_total_mixin; try apply _ || by eauto. - intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?]. rewrite -(Hx n'); last auto. symmetry; apply dist_le with n; try apply Hx; auto. - intros x. apply agree_idemp. - by intros n x y [(?&?&?) ?]. - intros n x y1 y2 Hval Hx; exists x, x; simpl; split. + by rewrite agree_idemp. + by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idemp. Qed. Canonical Structure agreeR : cmraT := CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin. Global Instance agree_total : CMRATotal agreeR. Proof. rewrite /CMRATotal; eauto. Qed. Global Instance agree_persistent (x : agree A) : Persistent x. Proof. by constructor. Qed. Program Definition to_agree (x : A) : agree A := {| agree_car n := x; agree_is_valid n := True |}. Solve Obligations with done. Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree. Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed. Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper _. Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree). Proof. by intros x y [_ Hxy]; apply Hxy. Qed. Lemma to_agree_uninj n (x : agree A) : ✓{n} x → ∃ y : A, to_agree y ≡{n}≡ x. Proof. intros [??]. exists (agree_car x n). split; naive_solver eauto using agree_valid_le. Qed. (** Internalized properties *) Lemma agree_equivI {M} a b : to_agree a ≡ to_agree b ⊣⊢ (a ≡ b : uPred M). Proof. uPred.unseal. do 2 split. by intros [? Hv]; apply (Hv n). apply: to_agree_ne. Qed. Lemma agree_validI {M} x y : ✓ (x ⋅ y) ⊢ (x ≡ y : uPred M). Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_inv. Qed. End agree. Arguments agreeC : clear implicits. Arguments agreeR : clear implicits. Program Definition agree_map {A B} (f : A → B) (x : agree A) : agree B := {| agree_car n := f (agree_car x n); agree_is_valid := agree_is_valid x; agree_valid_S := agree_valid_S _ x |}. Lemma agree_map_id {A} (x : agree A) : agree_map id x = x. Proof. by destruct x. Qed. Lemma agree_map_compose {A B C} (f : A → B) (g : B → C) (x : agree A) : agree_map (g ∘ f) x = agree_map g (agree_map f x). Proof. done. Qed. Section agree_map. Context {A B : ofeT} (f : A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}. Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f). Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed. Instance agree_map_proper : Proper ((≡) ==> (≡)) (agree_map f) := ne_proper _. Lemma agree_map_ext (g : A → B) x : (∀ x, f x ≡ g x) → agree_map f x ≡ agree_map g x. Proof. by intros Hfg; split; simpl; intros; rewrite ?Hfg. Qed. Global Instance agree_map_monotone : CMRAMonotone (agree_map f). Proof. split; first apply _. - by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]. - intros x y; rewrite !agree_included=> ->. split; last done; split; simpl; last tauto. by intros (?&?&Hxy); repeat split; intros; try apply Hxy; try apply Hf; eauto using @agree_valid_le. Qed. End agree_map. Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B := CofeMor (agree_map f : agreeC A → agreeC B). Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B). Proof. intros f g Hfg x; split; simpl; intros; first done. by apply dist_le with n; try apply Hfg. Qed. Program Definition agreeRF (F : cFunctor) : rFunctor := {| rFunctor_car A B := agreeR (cFunctor_car F A B); rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg) |}. Next Obligation. intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne. Qed. Next Obligation. intros F A B x; simpl. rewrite -{2}(agree_map_id x). apply agree_map_ext=>y. by rewrite cFunctor_id. Qed. Next Obligation. intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose. apply agree_map_ext=>y; apply cFunctor_compose. Qed. Instance agreeRF_contractive F : cFunctorContractive F → rFunctorContractive (agreeRF F). Proof. intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_contractive. Qed.