From iris.program_logic Require Import saved_one_shot hoare. From iris.heap_lang.lib.barrier Require Import proof specification. From iris.heap_lang Require Import notation par proofmode. From iris.proofmode Require Import invariants. Import uPred. Definition client eM eW1 eW2 : expr [] := let: "b" := newbarrier #() in (eM ;; ^signal '"b") || ((^wait '"b" ;; eW1) || (^wait '"b" ;; eW2)). Global Opaque client. Section proof. Context (G : cFunctor). Context {Σ : gFunctors} `{!heapG Σ, !barrierG Σ, !spawnG Σ, !oneShotG heap_lang Σ G}. Context (heapN N : namespace). Local Notation iProp := (iPropG heap_lang Σ). Local Notation X := (G iProp). Definition barrier_res γ (Φ : X → iProp) : iProp := (∃ x, one_shot_own γ x ★ Φ x)%I. Lemma worker_spec e γ l (Φ Ψ : X → iProp) : (recv heapN N l (barrier_res γ Φ) ★ ∀ x, {{ Φ x }} e {{ _, Ψ x }}) ⊢ WP wait #l ;; e {{ _, barrier_res γ Ψ }}. Proof. iIntros "[Hl #He]". wp_apply wait_spec; iFrame "Hl". iIntros "Hγ"; iDestruct "Hγ" as {x} "[#Hγ Hx]". wp_seq. iApply wp_wand_l. iSplitR; [|by iApply "He"]. iIntros {v} "?"; iExists x; by iSplit. Qed. Context (P : iProp) (Φ Φ1 Φ2 Ψ Ψ1 Ψ2 : X -n> iProp). Context {Φ_split : ∀ x, Φ x ⊢ (Φ1 x ★ Φ2 x)}. Context {Ψ_join : ∀ x, (Ψ1 x ★ Ψ2 x) ⊢ Ψ x}. Lemma P_res_split γ : barrier_res γ Φ ⊢ (barrier_res γ Φ1 ★ barrier_res γ Φ2). Proof. iIntros "Hγ"; iDestruct "Hγ" as {x} "[#Hγ Hx]". iDestruct (Φ_split with "Hx") as "[H1 H2]". by iSplitL "H1"; iExists x; iSplit. Qed. Lemma Q_res_join γ : (barrier_res γ Ψ1 ★ barrier_res γ Ψ2) ⊢ ▷ barrier_res γ Ψ. Proof. iIntros "[Hγ Hγ']"; iDestruct "Hγ" as {x} "[#Hγ Hx]"; iDestruct "Hγ'" as {x'} "[#Hγ' Hx']". iDestruct (one_shot_agree γ x x' with "[#]") as "Hxx"; first (by iSplit). iNext. iRewrite -"Hxx" in "Hx'". iExists x; iFrame "Hγ". iApply Ψ_join; by iSplitL "Hx". Qed. Lemma client_spec_new (eM eW1 eW2 : expr []) (eM' eW1' eW2' : expr ("b" :b: [])) : heapN ⊥ N → eM' = wexpr' eM → eW1' = wexpr' eW1 → eW2' = wexpr' eW2 → (heap_ctx heapN ★ P ★ {{ P }} eM {{ _, ∃ x, Φ x }} ★ (∀ x, {{ Φ1 x }} eW1 {{ _, Ψ1 x }}) ★ (∀ x, {{ Φ2 x }} eW2 {{ _, Ψ2 x }})) ⊢ WP client eM' eW1' eW2' {{ _, ∃ γ, barrier_res γ Ψ }}. Proof. iIntros {HN -> -> ->} "/= (#Hh&HP&#He&#He1&#He2)"; rewrite /client. iPvs one_shot_alloc as {γ} "Hγ". wp_apply (newbarrier_spec heapN N (barrier_res γ Φ)); auto. iFrame "Hh". iIntros {l} "[Hr Hs]". set (workers_post (v : val) := (barrier_res γ Ψ1 ★ barrier_res γ Ψ2)%I). wp_let. wp_apply (wp_par _ _ (λ _, True)%I workers_post); first done. iFrame "Hh". iSplitL "HP Hs Hγ"; [|iSplitL "Hr"]. - wp_focus eM. iApply wp_wand_l; iSplitR "HP"; [|by iApply "He"]. iIntros {v} "HP"; iDestruct "HP" as {x} "HP". wp_let. iPvs (one_shot_init _ _ x with "Hγ") as "Hx". iApply signal_spec; iFrame "Hs"; iSplit; last done. iExists x; by iSplitL "Hx". - iDestruct (recv_weaken with "[] Hr") as "Hr"; first by iApply P_res_split. iPvs (recv_split with "Hr") as "[H1 H2]"; first done. wp_apply (wp_par _ _ (λ _, barrier_res γ Ψ1)%I (λ _, barrier_res γ Ψ2)%I); first done. iSplit; [done|]; iSplitL "H1"; [|iSplitL "H2"]. + by iApply worker_spec; iSplitL "H1". + by iApply worker_spec; iSplitL "H2". + by iIntros {v1 v2} "? >". - iIntros {_ v} "[_ H]"; iPoseProof (Q_res_join with "H"). by iNext; iExists γ. Qed. End proof.