From iris.algebra Require Export cofe. Class PCore (A : Type) := pcore : A → option A. Instance: Params (@pcore) 2. Class Op (A : Type) := op : A → A → A. Instance: Params (@op) 2. Infix "⋅" := op (at level 50, left associativity) : C_scope. Notation "(⋅)" := op (only parsing) : C_scope. (* The inclusion quantifies over [A], not [option A]. This means we do not get reflexivity. However, if we used [option A], the following would no longer hold: x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2 *) Definition included `{Equiv A, Op A} (x y : A) := ∃ z, y ≡ x ⋅ z. Infix "≼" := included (at level 70) : C_scope. Notation "(≼)" := included (only parsing) : C_scope. Hint Extern 0 (_ ≼ _) => reflexivity. Instance: Params (@included) 3. Class ValidN (A : Type) := validN : nat → A → Prop. Instance: Params (@validN) 3. Notation "✓{ n } x" := (validN n x) (at level 20, n at next level, format "✓{ n } x"). Class Valid (A : Type) := valid : A → Prop. Instance: Params (@valid) 2. Notation "✓ x" := (valid x) (at level 20) : C_scope. Definition includedN `{Dist A, Op A} (n : nat) (x y : A) := ∃ z, y ≡{n}≡ x ⋅ z. Notation "x ≼{ n } y" := (includedN n x y) (at level 70, n at next level, format "x ≼{ n } y") : C_scope. Instance: Params (@includedN) 4. Hint Extern 0 (_ ≼{_} _) => reflexivity. Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := { (* setoids *) mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x); mixin_cmra_pcore_ne n x y cx : x ≡{n}≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡{n}≡ cy; mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n); (* valid *) mixin_cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x; mixin_cmra_validN_S n x : ✓{S n} x → ✓{n} x; (* monoid *) mixin_cmra_assoc : Assoc (≡) (⋅); mixin_cmra_comm : Comm (≡) (⋅); mixin_cmra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x; mixin_cmra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx; mixin_cmra_pcore_mono x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy; mixin_cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x; mixin_cmra_extend n x y1 y2 : ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → ∃ z1 z2, x ≡ z1 ⋅ z2 ∧ z1 ≡{n}≡ y1 ∧ z2 ≡{n}≡ y2 }. (** Bundeled version *) Structure cmraT := CMRAT' { cmra_car :> Type; cmra_equiv : Equiv cmra_car; cmra_dist : Dist cmra_car; cmra_compl : Compl cmra_car; cmra_pcore : PCore cmra_car; cmra_op : Op cmra_car; cmra_valid : Valid cmra_car; cmra_validN : ValidN cmra_car; cmra_cofe_mixin : CofeMixin cmra_car; cmra_mixin : CMRAMixin cmra_car; _ : Type }. Arguments CMRAT' _ {_ _ _ _ _ _ _} _ _ _. Notation CMRAT A m m' := (CMRAT' A m m' A). Arguments cmra_car : simpl never. Arguments cmra_equiv : simpl never. Arguments cmra_dist : simpl never. Arguments cmra_compl : simpl never. Arguments cmra_pcore : simpl never. Arguments cmra_op : simpl never. Arguments cmra_valid : simpl never. Arguments cmra_validN : simpl never. Arguments cmra_cofe_mixin : simpl never. Arguments cmra_mixin : simpl never. Add Printing Constructor cmraT. Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances. Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances. Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances. Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances. Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A). Canonical Structure cmra_cofeC. (** Lifting properties from the mixin *) Section cmra_mixin. Context {A : cmraT}. Implicit Types x y : A. Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x). Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed. Lemma cmra_pcore_ne n x y cx : x ≡{n}≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡{n}≡ cy. Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed. Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n). Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed. Lemma cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x. Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed. Lemma cmra_validN_S n x : ✓{S n} x → ✓{n} x. Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed. Global Instance cmra_assoc : Assoc (≡) (@op A _). Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed. Global Instance cmra_comm : Comm (≡) (@op A _). Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed. Lemma cmra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x. Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed. Lemma cmra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx. Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed. Lemma cmra_pcore_mono x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy. Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed. Lemma cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x. Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed. Lemma cmra_extend n x y1 y2 : ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → ∃ z1 z2, x ≡ z1 ⋅ z2 ∧ z1 ≡{n}≡ y1 ∧ z2 ≡{n}≡ y2. Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed. End cmra_mixin. Definition opM {A : cmraT} (x : A) (my : option A) := match my with Some y => x ⋅ y | None => x end. Infix "⋅?" := opM (at level 50, left associativity) : C_scope. (** * Persistent elements *) Class Persistent {A : cmraT} (x : A) := persistent : pcore x ≡ Some x. Arguments persistent {_} _ {_}. (** * Exclusive elements (i.e., elements that cannot have a frame). *) Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : ✓{0} (x ⋅ y) → False. Arguments exclusive0_l {_} _ {_} _ _. (** * CMRAs whose core is total *) (** The function [core] may return a dummy when used on CMRAs without total core. *) Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x). Class Core (A : Type) := core : A → A. Instance: Params (@core) 2. Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x). Arguments core' _ _ _ /. (** * CMRAs with a unit element *) (** We use the notation ∅ because for most instances (maps, sets, etc) the `empty' element is the unit. *) Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := { mixin_ucmra_unit_valid : ✓ ∅; mixin_ucmra_unit_left_id : LeftId (≡) ∅ (⋅); mixin_ucmra_pcore_unit : pcore ∅ ≡ Some ∅ }. Structure ucmraT := UCMRAT' { ucmra_car :> Type; ucmra_equiv : Equiv ucmra_car; ucmra_dist : Dist ucmra_car; ucmra_compl : Compl ucmra_car; ucmra_pcore : PCore ucmra_car; ucmra_op : Op ucmra_car; ucmra_valid : Valid ucmra_car; ucmra_validN : ValidN ucmra_car; ucmra_empty : Empty ucmra_car; ucmra_cofe_mixin : CofeMixin ucmra_car; ucmra_cmra_mixin : CMRAMixin ucmra_car; ucmra_mixin : UCMRAMixin ucmra_car; _ : Type; }. Arguments UCMRAT' _ {_ _ _ _ _ _ _ _} _ _ _ _. Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A). Arguments ucmra_car : simpl never. Arguments ucmra_equiv : simpl never. Arguments ucmra_dist : simpl never. Arguments ucmra_compl : simpl never. Arguments ucmra_pcore : simpl never. Arguments ucmra_op : simpl never. Arguments ucmra_valid : simpl never. Arguments ucmra_validN : simpl never. Arguments ucmra_cofe_mixin : simpl never. Arguments ucmra_cmra_mixin : simpl never. Arguments ucmra_mixin : simpl never. Add Printing Constructor ucmraT. Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances. Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A). Canonical Structure ucmra_cofeC. Coercion ucmra_cmraR (A : ucmraT) : cmraT := CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A). Canonical Structure ucmra_cmraR. (** Lifting properties from the mixin *) Section ucmra_mixin. Context {A : ucmraT}. Implicit Types x y : A. Lemma ucmra_unit_valid : ✓ (∅ : A). Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed. Global Instance ucmra_unit_left_id : LeftId (≡) ∅ (@op A _). Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed. Lemma ucmra_pcore_unit : pcore (∅:A) ≡ Some ∅. Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed. End ucmra_mixin. (** * Discrete CMRAs *) Class CMRADiscrete (A : cmraT) := { cmra_discrete :> Discrete A; cmra_discrete_valid (x : A) : ✓{0} x → ✓ x }. (** * Morphisms *) Class CMRAMonotone {A B : cmraT} (f : A → B) := { cmra_monotone_ne n :> Proper (dist n ==> dist n) f; cmra_monotone_validN n x : ✓{n} x → ✓{n} f x; cmra_monotone x y : x ≼ y → f x ≼ f y }. Arguments cmra_monotone_validN {_ _} _ {_} _ _ _. Arguments cmra_monotone {_ _} _ {_} _ _ _. (* Not all intended homomorphisms preserve validity, in particular it does not hold for the [ownM] and [own] connectives. *) Class CMRAHomomorphism {A B : cmraT} (f : A → B) := { cmra_homomorphism_ne n :> Proper (dist n ==> dist n) f; cmra_homomorphism x y : f (x ⋅ y) ≡ f x ⋅ f y }. Arguments cmra_homomorphism {_ _} _ _ _ _. Class UCMRAHomomorphism {A B : ucmraT} (f : A → B) := { ucmra_homomorphism :> CMRAHomomorphism f; ucmra_homomorphism_unit : f ∅ ≡ ∅ }. Arguments ucmra_homomorphism_unit {_ _} _ _. (** * Properties **) Section cmra. Context {A : cmraT}. Implicit Types x y z : A. Implicit Types xs ys zs : list A. (** ** Setoids *) Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _). Proof. intros x y Hxy. destruct (pcore x) as [cx|] eqn:?. { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. } destruct (pcore y) as [cy|] eqn:?; auto. destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto. Qed. Lemma cmra_pcore_proper x y cx : x ≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡ cy. Proof. intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto. exists cy; split; [done|apply equiv_dist=> n]. destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver. Qed. Global Instance cmra_pcore_proper' : Proper ((≡) ==> (≡)) (@pcore A _). Proof. apply (ne_proper _). Qed. Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _). Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed. Global Instance cmra_op_proper' : Proper ((≡) ==> (≡) ==> (≡)) (@op A _). Proof. apply (ne_proper_2 _). Qed. Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1. Proof. by split; apply cmra_validN_ne. Qed. Global Instance cmra_validN_proper : Proper ((≡) ==> iff) (@validN A _ n) | 1. Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed. Global Instance cmra_valid_proper : Proper ((≡) ==> iff) (@valid A _). Proof. intros x y Hxy; rewrite !cmra_valid_validN. by split=> ? n; [rewrite -Hxy|rewrite Hxy]. Qed. Global Instance cmra_includedN_ne n : Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. Global Instance cmra_includedN_proper n : Proper ((≡) ==> (≡) ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy. by rewrite (Hx n) (Hy n). Qed. Global Instance cmra_included_proper : Proper ((≡) ==> (≡) ==> iff) (@included A _ _) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A). Proof. destruct 2; by cofe_subst. Qed. Global Instance cmra_opM_proper : Proper ((≡) ==> (≡) ==> (≡)) (@opM A). Proof. destruct 2; by setoid_subst. Qed. (** ** Op *) Lemma cmra_opM_assoc x y mz : (x ⋅ y) ⋅? mz ≡ x ⋅ (y ⋅? mz). Proof. destruct mz; by rewrite /= -?assoc. Qed. (** ** Validity *) Lemma cmra_validN_le n n' x : ✓{n} x → n' ≤ n → ✓{n'} x. Proof. induction 2; eauto using cmra_validN_S. Qed. Lemma cmra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed. Lemma cmra_validN_op_r n x y : ✓{n} (x ⋅ y) → ✓{n} y. Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed. Lemma cmra_valid_op_r x y : ✓ (x ⋅ y) → ✓ y. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed. (** ** Core *) Lemma cmra_pcore_l' x cx : pcore x ≡ Some cx → cx ⋅ x ≡ x. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r x cx : pcore x = Some cx → x ⋅ cx ≡ x. Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r' x cx : pcore x ≡ Some cx → x ⋅ cx ≡ x. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. Lemma cmra_pcore_idemp' x cx : pcore x ≡ Some cx → pcore cx ≡ Some cx. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. Lemma cmra_pcore_dup x cx : pcore x = Some cx → cx ≡ cx ⋅ cx. Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed. Lemma cmra_pcore_dup' x cx : pcore x ≡ Some cx → cx ≡ cx ⋅ cx. Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed. Lemma cmra_pcore_validN n x cx : ✓{n} x → pcore x = Some cx → ✓{n} cx. Proof. intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l. Qed. Lemma cmra_pcore_valid x cx : ✓ x → pcore x = Some cx → ✓ cx. Proof. intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l. Qed. (** ** Persistent elements *) Lemma persistent_dup x `{!Persistent x} : x ≡ x ⋅ x. Proof. by apply cmra_pcore_dup' with x. Qed. (** ** Exclusive elements *) Lemma exclusiveN_l n x `{!Exclusive x} y : ✓{n} (x ⋅ y) → False. Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed. Lemma exclusiveN_r n x `{!Exclusive x} y : ✓{n} (y ⋅ x) → False. Proof. rewrite comm. by apply exclusiveN_l. Qed. Lemma exclusive_l x `{!Exclusive x} y : ✓ (x ⋅ y) → False. Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed. Lemma exclusive_r x `{!Exclusive x} y : ✓ (y ⋅ x) → False. Proof. rewrite comm. by apply exclusive_l. Qed. Lemma exclusiveN_opM n x `{!Exclusive x} my : ✓{n} (x ⋅? my) → my = None. Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed. (** ** Order *) Lemma cmra_included_includedN n x y : x ≼ y → x ≼{n} y. Proof. intros [z ->]. by exists z. Qed. Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n). Proof. intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. Qed. Global Instance cmra_included_trans: Transitive (@included A _ _). Proof. intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. Qed. Lemma cmra_valid_included x y : ✓ y → x ≼ y → ✓ x. Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed. Lemma cmra_validN_includedN n x y : ✓{n} y → x ≼{n} y → ✓{n} x. Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed. Lemma cmra_validN_included n x y : ✓{n} y → x ≼ y → ✓{n} x. Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed. Lemma cmra_includedN_S n x y : x ≼{S n} y → x ≼{n} y. Proof. by intros [z Hz]; exists z; apply dist_S. Qed. Lemma cmra_includedN_le n n' x y : x ≼{n} y → n' ≤ n → x ≼{n'} y. Proof. induction 2; auto using cmra_includedN_S. Qed. Lemma cmra_includedN_l n x y : x ≼{n} x ⋅ y. Proof. by exists y. Qed. Lemma cmra_included_l x y : x ≼ x ⋅ y. Proof. by exists y. Qed. Lemma cmra_includedN_r n x y : y ≼{n} x ⋅ y. Proof. rewrite (comm op); apply cmra_includedN_l. Qed. Lemma cmra_included_r x y : y ≼ x ⋅ y. Proof. rewrite (comm op); apply cmra_included_l. Qed. Lemma cmra_pcore_mono' x y cx : x ≼ y → pcore x ≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy. Proof. intros ? (cx'&?&Hcx)%equiv_Some_inv_r'. destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto. exists cy; by rewrite Hcx. Qed. Lemma cmra_pcore_monoN' n x y cx : x ≼{n} y → pcore x ≡{n}≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼{n} cy. Proof. intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'. destruct (cmra_pcore_mono x (x ⋅ z) cx') as (cy&Hxy&?); auto using cmra_included_l. assert (pcore y ≡{n}≡ Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'. { by rewrite Hy Hxy. } exists cy'; split; first done. rewrite Hcx -Hcy'; auto using cmra_included_includedN. Qed. Lemma cmra_included_pcore x cx : pcore x = Some cx → cx ≼ x. Proof. exists x. by rewrite cmra_pcore_l. Qed. Lemma cmra_monoN_l n x y z : x ≼{n} y → z ⋅ x ≼{n} z ⋅ y. Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. Lemma cmra_mono_l x y z : x ≼ y → z ⋅ x ≼ z ⋅ y. Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. Lemma cmra_monoN_r n x y z : x ≼{n} y → x ⋅ z ≼{n} y ⋅ z. Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed. Lemma cmra_mono_r x y z : x ≼ y → x ⋅ z ≼ y ⋅ z. Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed. Lemma cmra_monoN n x1 x2 y1 y2 : x1 ≼{n} y1 → x2 ≼{n} y2 → x1 ⋅ x2 ≼{n} y1 ⋅ y2. Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed. Lemma cmra_mono x1 x2 y1 y2 : x1 ≼ y1 → x2 ≼ y2 → x1 ⋅ x2 ≼ y1 ⋅ y2. Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed. Global Instance cmra_monoN' n : Proper (includedN n ==> includedN n ==> includedN n) (@op A _). Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed. Global Instance cmra_mono' : Proper (included ==> included ==> included) (@op A _). Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed. Lemma cmra_included_dist_l n x1 x2 x1' : x1 ≼ x2 → x1' ≡{n}≡ x1 → ∃ x2', x1' ≼ x2' ∧ x2' ≡{n}≡ x2. Proof. intros [z Hx2] Hx1; exists (x1' ⋅ z); split; auto using cmra_included_l. by rewrite Hx1 Hx2. Qed. (** ** Total core *) Section total_core. Context `{CMRATotal A}. Lemma cmra_core_l x : core x ⋅ x ≡ x. Proof. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l. Qed. Lemma cmra_core_idemp x : core (core x) ≡ core x. Proof. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp. Qed. Lemma cmra_core_mono x y : x ≼ y → core x ≼ core y. Proof. intros; destruct (cmra_total x) as [cx Hcx]. destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto. by rewrite /core /= Hcx Hcy. Qed. Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _). Proof. intros x y Hxy. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= -Hxy Hcx. Qed. Global Instance cmra_core_proper : Proper ((≡) ==> (≡)) (@core A _). Proof. apply (ne_proper _). Qed. Lemma cmra_core_r x : x ⋅ core x ≡ x. Proof. by rewrite (comm _ x) cmra_core_l. Qed. Lemma cmra_core_dup x : core x ≡ core x ⋅ core x. Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed. Lemma cmra_core_validN n x : ✓{n} x → ✓{n} core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed. Lemma cmra_core_valid x : ✓ x → ✓ core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed. Lemma persistent_total x : Persistent x ↔ core x ≡ x. Proof. split; [intros; by rewrite /core /= (persistent x)|]. rewrite /Persistent /core /=. destruct (cmra_total x) as [? ->]. by constructor. Qed. Lemma persistent_core x `{!Persistent x} : core x ≡ x. Proof. by apply persistent_total. Qed. Global Instance cmra_core_persistent x : Persistent (core x). Proof. destruct (cmra_total x) as [cx Hcx]. rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp. Qed. Lemma cmra_included_core x : core x ≼ x. Proof. by exists x; rewrite cmra_core_l. Qed. Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n). Proof. split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r. Qed. Global Instance cmra_included_preorder : PreOrder (@included A _ _). Proof. split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r. Qed. Lemma cmra_core_monoN n x y : x ≼{n} y → core x ≼{n} core y. Proof. intros [z ->]. apply cmra_included_includedN, cmra_core_mono, cmra_included_l. Qed. End total_core. (** ** Timeless *) Lemma cmra_timeless_included_l x y : Timeless x → ✓{0} y → x ≼{0} y → x ≼ y. Proof. intros ?? [x' ?]. destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *. by exists z'; rewrite Hy (timeless x z). Qed. Lemma cmra_timeless_included_r x y : Timeless y → x ≼{0} y → x ≼ y. Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed. Lemma cmra_op_timeless x1 x2 : ✓ (x1 ⋅ x2) → Timeless x1 → Timeless x2 → Timeless (x1 ⋅ x2). Proof. intros ??? z Hz. destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *. { rewrite -?Hz. by apply cmra_valid_validN. } by rewrite Hz' (timeless x1 y1) // (timeless x2 y2). Qed. (** ** Discrete *) Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x : ✓ x ↔ ✓{n} x. Proof. split; first by rewrite cmra_valid_validN. eauto using cmra_discrete_valid, cmra_validN_le with lia. Qed. Lemma cmra_discrete_included_iff `{Discrete A} n x y : x ≼ y ↔ x ≼{n} y. Proof. split; first by apply cmra_included_includedN. intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l. Qed. End cmra. (** * Properties about CMRAs with a unit element **) Section ucmra. Context {A : ucmraT}. Implicit Types x y z : A. Lemma ucmra_unit_validN n : ✓{n} (∅:A). Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed. Lemma ucmra_unit_leastN n x : ∅ ≼{n} x. Proof. by exists x; rewrite left_id. Qed. Lemma ucmra_unit_least x : ∅ ≼ x. Proof. by exists x; rewrite left_id. Qed. Global Instance ucmra_unit_right_id : RightId (≡) ∅ (@op A _). Proof. by intros x; rewrite (comm op) left_id. Qed. Global Instance ucmra_unit_persistent : Persistent (∅:A). Proof. apply ucmra_pcore_unit. Qed. Global Instance cmra_unit_total : CMRATotal A. Proof. intros x. destruct (cmra_pcore_mono' ∅ x ∅) as (cx&->&?); eauto using ucmra_unit_least, (persistent ∅). Qed. End ucmra. Hint Immediate cmra_unit_total. (** * Properties about CMRAs with Leibniz equality *) Section cmra_leibniz. Context {A : cmraT} `{!LeibnizEquiv A}. Implicit Types x y : A. Global Instance cmra_assoc_L : Assoc (=) (@op A _). Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed. Global Instance cmra_comm_L : Comm (=) (@op A _). Proof. intros x y. unfold_leibniz. by rewrite comm. Qed. Lemma cmra_pcore_l_L x cx : pcore x = Some cx → cx ⋅ x = x. Proof. unfold_leibniz. apply cmra_pcore_l'. Qed. Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx → pcore cx = Some cx. Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed. Lemma cmra_opM_assoc_L x y mz : (x ⋅ y) ⋅? mz = x ⋅ (y ⋅? mz). Proof. unfold_leibniz. apply cmra_opM_assoc. Qed. (** ** Core *) Lemma cmra_pcore_r_L x cx : pcore x = Some cx → x ⋅ cx = x. Proof. unfold_leibniz. apply cmra_pcore_r'. Qed. Lemma cmra_pcore_dup_L x cx : pcore x = Some cx → cx = cx ⋅ cx. Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed. (** ** Persistent elements *) Lemma persistent_dup_L x `{!Persistent x} : x ≡ x ⋅ x. Proof. unfold_leibniz. by apply persistent_dup. Qed. (** ** Total core *) Section total_core. Context `{CMRATotal A}. Lemma cmra_core_r_L x : x ⋅ core x = x. Proof. unfold_leibniz. apply cmra_core_r. Qed. Lemma cmra_core_l_L x : core x ⋅ x = x. Proof. unfold_leibniz. apply cmra_core_l. Qed. Lemma cmra_core_idemp_L x : core (core x) = core x. Proof. unfold_leibniz. apply cmra_core_idemp. Qed. Lemma cmra_core_dup_L x : core x = core x ⋅ core x. Proof. unfold_leibniz. apply cmra_core_dup. Qed. Lemma persistent_total_L x : Persistent x ↔ core x = x. Proof. unfold_leibniz. apply persistent_total. Qed. Lemma persistent_core_L x `{!Persistent x} : core x = x. Proof. by apply persistent_total_L. Qed. End total_core. End cmra_leibniz. Section ucmra_leibniz. Context {A : ucmraT} `{!LeibnizEquiv A}. Implicit Types x y z : A. Global Instance ucmra_unit_left_id_L : LeftId (=) ∅ (@op A _). Proof. intros x. unfold_leibniz. by rewrite left_id. Qed. Global Instance ucmra_unit_right_id_L : RightId (=) ∅ (@op A _). Proof. intros x. unfold_leibniz. by rewrite right_id. Qed. End ucmra_leibniz. (** * Constructing a CMRA with total core *) Section cmra_total. Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}. Context (total : ∀ x, is_Some (pcore x)). Context (op_ne : ∀ n (x : A), Proper (dist n ==> dist n) (op x)). Context (core_ne : ∀ n, Proper (dist n ==> dist n) (@core A _)). Context (validN_ne : ∀ n, Proper (dist n ==> impl) (@validN A _ n)). Context (valid_validN : ∀ (x : A), ✓ x ↔ ∀ n, ✓{n} x). Context (validN_S : ∀ n (x : A), ✓{S n} x → ✓{n} x). Context (op_assoc : Assoc (≡) (@op A _)). Context (op_comm : Comm (≡) (@op A _)). Context (core_l : ∀ x : A, core x ⋅ x ≡ x). Context (core_idemp : ∀ x : A, core (core x) ≡ core x). Context (core_mono : ∀ x y : A, x ≼ y → core x ≼ core y). Context (validN_op_l : ∀ n (x y : A), ✓{n} (x ⋅ y) → ✓{n} x). Context (extend : ∀ n (x y1 y2 : A), ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → ∃ z1 z2, x ≡ z1 ⋅ z2 ∧ z1 ≡{n}≡ y1 ∧ z2 ≡{n}≡ y2). Lemma cmra_total_mixin : CMRAMixin A. Proof. split; auto. - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx. - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=. case (total cx)=>[ccx ->]; by constructor. - intros x y cx Hxy%core_mono Hx. move: Hxy. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. Qed. End cmra_total. (** * Properties about monotone functions *) Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A). Proof. repeat split; by try apply _. Qed. Instance cmra_monotone_compose {A B C : cmraT} (f : A → B) (g : B → C) : CMRAMonotone f → CMRAMonotone g → CMRAMonotone (g ∘ f). Proof. split. - apply _. - move=> n x Hx /=. by apply cmra_monotone_validN, cmra_monotone_validN. - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone. Qed. Section cmra_monotone. Context {A B : cmraT} (f : A → B) `{!CMRAMonotone f}. Global Instance cmra_monotone_proper : Proper ((≡) ==> (≡)) f := ne_proper _. Lemma cmra_monotoneN n x y : x ≼{n} y → f x ≼{n} f y. Proof. intros [z ->]. apply cmra_included_includedN, (cmra_monotone f), cmra_included_l. Qed. Lemma cmra_monotone_valid x : ✓ x → ✓ f x. Proof. rewrite !cmra_valid_validN; eauto using cmra_monotone_validN. Qed. End cmra_monotone. Instance cmra_homomorphism_id {A : cmraT} : CMRAHomomorphism (@id A). Proof. repeat split; by try apply _. Qed. Instance cmra_homomorphism_compose {A B C : cmraT} (f : A → B) (g : B → C) : CMRAHomomorphism f → CMRAHomomorphism g → CMRAHomomorphism (g ∘ f). Proof. split. - apply _. - move=> x y /=. rewrite -(cmra_homomorphism g). by apply (ne_proper _), cmra_homomorphism. Qed. Instance cmra_homomorphism_proper {A B : cmraT} (f : A → B) : CMRAHomomorphism f → Proper ((≡) ==> (≡)) f := λ _, ne_proper _. Instance ucmra_homomorphism_id {A : ucmraT} : UCMRAHomomorphism (@id A). Proof. repeat split; by try apply _. Qed. Instance ucmra_homomorphism_compose {A B C : ucmraT} (f : A → B) (g : B → C) : UCMRAHomomorphism f → UCMRAHomomorphism g → UCMRAHomomorphism (g ∘ f). Proof. split. apply _. by rewrite /= !ucmra_homomorphism_unit. Qed. (** Functors *) Structure rFunctor := RFunctor { rFunctor_car : cofeT → cofeT → cmraT; rFunctor_map {A1 A2 B1 B2} : ((A2 -n> A1) * (B1 -n> B2)) → rFunctor_car A1 B1 -n> rFunctor_car A2 B2; rFunctor_ne A1 A2 B1 B2 n : Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2); rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x ≡ x; rFunctor_compose {A1 A2 A3 B1 B2 B3} (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x : rFunctor_map (f◎g, g'◎f') x ≡ rFunctor_map (g,g') (rFunctor_map (f,f') x); rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) : CMRAMonotone (rFunctor_map fg) }. Existing Instances rFunctor_ne rFunctor_mono. Instance: Params (@rFunctor_map) 5. Class rFunctorContractive (F : rFunctor) := rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2). Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A. Coercion rFunctor_diag : rFunctor >-> Funclass. Program Definition constRF (B : cmraT) : rFunctor := {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}. Solve Obligations with done. Instance constRF_contractive B : rFunctorContractive (constRF B). Proof. rewrite /rFunctorContractive; apply _. Qed. Structure urFunctor := URFunctor { urFunctor_car : cofeT → cofeT → ucmraT; urFunctor_map {A1 A2 B1 B2} : ((A2 -n> A1) * (B1 -n> B2)) → urFunctor_car A1 B1 -n> urFunctor_car A2 B2; urFunctor_ne A1 A2 B1 B2 n : Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2); urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x ≡ x; urFunctor_compose {A1 A2 A3 B1 B2 B3} (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x : urFunctor_map (f◎g, g'◎f') x ≡ urFunctor_map (g,g') (urFunctor_map (f,f') x); urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) : CMRAMonotone (urFunctor_map fg) }. Existing Instances urFunctor_ne urFunctor_mono. Instance: Params (@urFunctor_map) 5. Class urFunctorContractive (F : urFunctor) := urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2). Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A. Coercion urFunctor_diag : urFunctor >-> Funclass. Program Definition constURF (B : ucmraT) : urFunctor := {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}. Solve Obligations with done. Instance constURF_contractive B : urFunctorContractive (constURF B). Proof. rewrite /urFunctorContractive; apply _. Qed. (** * Transporting a CMRA equality *) Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B := eq_rect A id x _ H. Section cmra_transport. Context {A B : cmraT} (H : A = B). Notation T := (cmra_transport H). Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T. Proof. by intros ???; destruct H. Qed. Global Instance cmra_transport_proper : Proper ((≡) ==> (≡)) T. Proof. by intros ???; destruct H. Qed. Lemma cmra_transport_op x y : T (x ⋅ y) = T x ⋅ T y. Proof. by destruct H. Qed. Lemma cmra_transport_core x : T (core x) = core (T x). Proof. by destruct H. Qed. Lemma cmra_transport_validN n x : ✓{n} T x ↔ ✓{n} x. Proof. by destruct H. Qed. Lemma cmra_transport_valid x : ✓ T x ↔ ✓ x. Proof. by destruct H. Qed. Global Instance cmra_transport_timeless x : Timeless x → Timeless (T x). Proof. by destruct H. Qed. Global Instance cmra_transport_persistent x : Persistent x → Persistent (T x). Proof. by destruct H. Qed. End cmra_transport. (** * Instances *) (** ** Discrete CMRA *) Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := { (* setoids *) ra_op_proper (x : A) : Proper ((≡) ==> (≡)) (op x); ra_core_proper x y cx : x ≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡ cy; ra_validN_proper : Proper ((≡) ==> impl) valid; (* monoid *) ra_assoc : Assoc (≡) (⋅); ra_comm : Comm (≡) (⋅); ra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x; ra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx; ra_pcore_mono x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy; ra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x }. Section discrete. Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A (≡)}. Context (ra_mix : RAMixin A). Existing Instances discrete_dist discrete_compl. Instance discrete_validN : ValidN A := λ n x, ✓ x. Definition discrete_cmra_mixin : CMRAMixin A. Proof. destruct ra_mix; split; try done. - intros x; split; first done. by move=> /(_ 0). - intros n x y1 y2 ??; by exists y1, y2. Qed. End discrete. Notation discreteR A ra_mix := (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)). Notation discreteUR A ra_mix ucmra_mix := (UCMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix) ucmra_mix). Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A, @Equivalence A (≡)} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix). Proof. split. apply _. done. Qed. Section ra_total. Context A `{Equiv A, PCore A, Op A, Valid A}. Context (total : ∀ x, is_Some (pcore x)). Context (op_proper : ∀ (x : A), Proper ((≡) ==> (≡)) (op x)). Context (core_proper: Proper ((≡) ==> (≡)) (@core A _)). Context (valid_proper : Proper ((≡) ==> impl) (@valid A _)). Context (op_assoc : Assoc (≡) (@op A _)). Context (op_comm : Comm (≡) (@op A _)). Context (core_l : ∀ x : A, core x ⋅ x ≡ x). Context (core_idemp : ∀ x : A, core (core x) ≡ core x). Context (core_mono : ∀ x y : A, x ≼ y → core x ≼ core y). Context (valid_op_l : ∀ x y : A, ✓ (x ⋅ y) → ✓ x). Lemma ra_total_mixin : RAMixin A. Proof. split; auto. - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx. - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=. case (total cx)=>[ccx ->]; by constructor. - intros x y cx Hxy%core_mono Hx. move: Hxy. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. Qed. End ra_total. (** ** CMRA for the unit type *) Section unit. Instance unit_valid : Valid () := λ x, True. Instance unit_validN : ValidN () := λ n x, True. Instance unit_pcore : PCore () := λ x, Some x. Instance unit_op : Op () := λ x y, (). Lemma unit_cmra_mixin : CMRAMixin (). Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed. Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin. Instance unit_empty : Empty () := (). Lemma unit_ucmra_mixin : UCMRAMixin (). Proof. done. Qed. Canonical Structure unitUR : ucmraT := UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin. Global Instance unit_cmra_discrete : CMRADiscrete unitR. Proof. done. Qed. Global Instance unit_persistent (x : ()) : Persistent x. Proof. by constructor. Qed. End unit. (** ** Natural numbers *) Section nat. Instance nat_valid : Valid nat := λ x, True. Instance nat_validN : ValidN nat := λ n x, True. Instance nat_pcore : PCore nat := λ x, Some 0. Instance nat_op : Op nat := plus. Definition nat_op_plus x y : x ⋅ y = x + y := eq_refl. Lemma nat_included (x y : nat) : x ≼ y ↔ x ≤ y. Proof. split. - intros [z ->]; unfold op, nat_op; lia. - exists (y - x). by apply le_plus_minus. Qed. Lemma nat_ra_mixin : RAMixin nat. Proof. apply ra_total_mixin; try by eauto. - solve_proper. - intros x y z. apply Nat.add_assoc. - intros x y. apply Nat.add_comm. - by exists 0. Qed. Canonical Structure natR : cmraT := discreteR nat nat_ra_mixin. Instance nat_empty : Empty nat := 0. Lemma nat_ucmra_mixin : UCMRAMixin nat. Proof. split; apply _ || done. Qed. Canonical Structure natUR : ucmraT := discreteUR nat nat_ra_mixin nat_ucmra_mixin. Global Instance nat_cmra_discrete : CMRADiscrete natR. Proof. constructor; apply _ || done. Qed. End nat. Definition mnat := nat. Section mnat. Instance mnat_valid : Valid mnat := λ x, True. Instance mnat_validN : ValidN mnat := λ n x, True. Instance mnat_pcore : PCore mnat := Some. Instance mnat_op : Op mnat := Nat.max. Definition mnat_op_max x y : x ⋅ y = x `max` y := eq_refl. Lemma mnat_included (x y : mnat) : x ≼ y ↔ x ≤ y. Proof. split. - intros [z ->]; unfold op, mnat_op; lia. - exists y. by symmetry; apply Nat.max_r. Qed. Lemma mnat_ra_mixin : RAMixin mnat. Proof. apply ra_total_mixin; try by eauto. - solve_proper. - solve_proper. - intros x y z. apply Nat.max_assoc. - intros x y. apply Nat.max_comm. - intros x. apply Max.max_idempotent. Qed. Canonical Structure mnatR : cmraT := discreteR mnat mnat_ra_mixin. Instance mnat_empty : Empty mnat := 0. Lemma mnat_ucmra_mixin : UCMRAMixin mnat. Proof. split; apply _ || done. Qed. Canonical Structure mnatUR : ucmraT := discreteUR mnat mnat_ra_mixin mnat_ucmra_mixin. Global Instance mnat_cmra_discrete : CMRADiscrete mnatR. Proof. constructor; apply _ || done. Qed. Global Instance mnat_persistent (x : mnat) : Persistent x. Proof. by constructor. Qed. End mnat. (** ** Product *) Section prod. Context {A B : cmraT}. Local Arguments pcore _ _ !_ /. Local Arguments cmra_pcore _ !_/. Instance prod_op : Op (A * B) := λ x y, (x.1 ⋅ y.1, x.2 ⋅ y.2). Instance prod_pcore : PCore (A * B) := λ x, c1 ← pcore (x.1); c2 ← pcore (x.2); Some (c1, c2). Arguments prod_pcore !_ /. Instance prod_valid : Valid (A * B) := λ x, ✓ x.1 ∧ ✓ x.2. Instance prod_validN : ValidN (A * B) := λ n x, ✓{n} x.1 ∧ ✓{n} x.2. Lemma prod_pcore_Some (x cx : A * B) : pcore x = Some cx ↔ pcore (x.1) = Some (cx.1) ∧ pcore (x.2) = Some (cx.2). Proof. destruct x, cx; by intuition simplify_option_eq. Qed. Lemma prod_pcore_Some' (x cx : A * B) : pcore x ≡ Some cx ↔ pcore (x.1) ≡ Some (cx.1) ∧ pcore (x.2) ≡ Some (cx.2). Proof. split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|]. rewrite {3}/pcore /prod_pcore. (* TODO: use setoid rewrite *) intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2. by constructor. Qed. Lemma prod_included (x y : A * B) : x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2. Proof. split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto. Qed. Lemma prod_includedN (x y : A * B) n : x ≼{n} y ↔ x.1 ≼{n} y.1 ∧ x.2 ≼{n} y.2. Proof. split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto. Qed. Definition prod_cmra_mixin : CMRAMixin (A * B). Proof. split; try apply _. - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2. - intros n x y cx; setoid_rewrite prod_pcore_Some=> -[??] [??]. destruct (cmra_pcore_ne n (x.1) (y.1) (cx.1)) as (z1&->&?); auto. destruct (cmra_pcore_ne n (x.2) (y.2) (cx.2)) as (z2&->&?); auto. exists (z1,z2); repeat constructor; auto. - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2. - intros x; split. + intros [??] n; split; by apply cmra_valid_validN. + intros Hxy; split; apply cmra_valid_validN=> n; apply Hxy. - by intros n x [??]; split; apply cmra_validN_S. - by split; rewrite /= assoc. - by split; rewrite /= comm. - intros x y [??]%prod_pcore_Some; constructor; simpl; eauto using cmra_pcore_l. - intros x y; rewrite prod_pcore_Some prod_pcore_Some'. naive_solver eauto using cmra_pcore_idemp. - intros x y cx; rewrite prod_included prod_pcore_Some=> -[??] [??]. destruct (cmra_pcore_mono (x.1) (y.1) (cx.1)) as (z1&?&?); auto. destruct (cmra_pcore_mono (x.2) (y.2) (cx.2)) as (z2&?&?); auto. exists (z1,z2). by rewrite prod_included prod_pcore_Some. - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l. - intros n x y1 y2 [??] [??]; simpl in *. destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z11&z12&?&?&?); auto. destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z21&z22&?&?&?); auto. by exists (z11,z21), (z12,z22). Qed. Canonical Structure prodR := CMRAT (A * B) prod_cofe_mixin prod_cmra_mixin. Lemma pair_op (a a' : A) (b b' : B) : (a, b) ⋅ (a', b') = (a ⋅ a', b ⋅ b'). Proof. done. Qed. Global Instance prod_cmra_total : CMRATotal A → CMRATotal B → CMRATotal prodR. Proof. intros H1 H2 [a b]. destruct (H1 a) as [ca ?], (H2 b) as [cb ?]. exists (ca,cb); by simplify_option_eq. Qed. Global Instance prod_cmra_discrete : CMRADiscrete A → CMRADiscrete B → CMRADiscrete prodR. Proof. split. apply _. by intros ? []; split; apply cmra_discrete_valid. Qed. Global Instance pair_persistent x y : Persistent x → Persistent y → Persistent (x,y). Proof. by rewrite /Persistent prod_pcore_Some'. Qed. Global Instance pair_exclusive_l x y : Exclusive x → Exclusive (x,y). Proof. by intros ?[][?%exclusive0_l]. Qed. Global Instance pair_exclusive_r x y : Exclusive y → Exclusive (x,y). Proof. by intros ?[][??%exclusive0_l]. Qed. End prod. Arguments prodR : clear implicits. Section prod_unit. Context {A B : ucmraT}. Instance prod_empty `{Empty A, Empty B} : Empty (A * B) := (∅, ∅). Lemma prod_ucmra_mixin : UCMRAMixin (A * B). Proof. split. - split; apply ucmra_unit_valid. - by split; rewrite /=left_id. - rewrite prod_pcore_Some'; split; apply (persistent _). Qed. Canonical Structure prodUR := UCMRAT (A * B) prod_cofe_mixin prod_cmra_mixin prod_ucmra_mixin. Lemma pair_split (x : A) (y : B) : (x, y) ≡ (x, ∅) ⋅ (∅, y). Proof. by rewrite pair_op left_id right_id. Qed. Lemma pair_split_L `{!LeibnizEquiv A, !LeibnizEquiv B} (x : A) (y : B) : (x, y) = (x, ∅) ⋅ (∅, y). Proof. unfold_leibniz. apply pair_split. Qed. End prod_unit. Arguments prodUR : clear implicits. Instance prod_map_cmra_monotone {A A' B B' : cmraT} (f : A → A') (g : B → B') : CMRAMonotone f → CMRAMonotone g → CMRAMonotone (prod_map f g). Proof. split; first apply _. - by intros n x [??]; split; simpl; apply cmra_monotone_validN. - intros x y; rewrite !prod_included=> -[??] /=. by split; apply cmra_monotone. Qed. Program Definition prodRF (F1 F2 : rFunctor) : rFunctor := {| rFunctor_car A B := prodR (rFunctor_car F1 A B) (rFunctor_car F2 A B); rFunctor_map A1 A2 B1 B2 fg := prodC_map (rFunctor_map F1 fg) (rFunctor_map F2 fg) |}. Next Obligation. intros F1 F2 A1 A2 B1 B2 n ???. by apply prodC_map_ne; apply rFunctor_ne. Qed. Next Obligation. by intros F1 F2 A B [??]; rewrite /= !rFunctor_id. Qed. Next Obligation. intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl. by rewrite !rFunctor_compose. Qed. Instance prodRF_contractive F1 F2 : rFunctorContractive F1 → rFunctorContractive F2 → rFunctorContractive (prodRF F1 F2). Proof. intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply rFunctor_contractive. Qed. Program Definition prodURF (F1 F2 : urFunctor) : urFunctor := {| urFunctor_car A B := prodUR (urFunctor_car F1 A B) (urFunctor_car F2 A B); urFunctor_map A1 A2 B1 B2 fg := prodC_map (urFunctor_map F1 fg) (urFunctor_map F2 fg) |}. Next Obligation. intros F1 F2 A1 A2 B1 B2 n ???. by apply prodC_map_ne; apply urFunctor_ne. Qed. Next Obligation. by intros F1 F2 A B [??]; rewrite /= !urFunctor_id. Qed. Next Obligation. intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl. by rewrite !urFunctor_compose. Qed. Instance prodURF_contractive F1 F2 : urFunctorContractive F1 → urFunctorContractive F2 → urFunctorContractive (prodURF F1 F2). Proof. intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply urFunctor_contractive. Qed. (** ** CMRA for the option type *) Section option. Context {A : cmraT}. Local Arguments core _ _ !_ /. Local Arguments pcore _ _ !_ /. Instance option_valid : Valid (option A) := λ mx, match mx with Some x => ✓ x | None => True end. Instance option_validN : ValidN (option A) := λ n mx, match mx with Some x => ✓{n} x | None => True end. Instance option_pcore : PCore (option A) := λ mx, Some (mx ≫= pcore). Arguments option_pcore !_ /. Instance option_op : Op (option A) := union_with (λ x y, Some (x ⋅ y)). Definition Some_valid a : ✓ Some a ↔ ✓ a := reflexivity _. Definition Some_op a b : Some (a ⋅ b) = Some a ⋅ Some b := eq_refl. Lemma Some_core `{CMRATotal A} a : Some (core a) = core (Some a). Proof. rewrite /core /=. by destruct (cmra_total a) as [? ->]. Qed. Lemma Some_op_opM x my : Some x ⋅ my = Some (x ⋅? my). Proof. by destruct my. Qed. Lemma option_included (mx my : option A) : mx ≼ my ↔ mx = None ∨ ∃ x y, mx = Some x ∧ my = Some y ∧ (x ≡ y ∨ x ≼ y). Proof. split. - intros [mz Hmz]. destruct mx as [x|]; [right|by left]. destruct my as [y|]; [exists x, y|destruct mz; inversion_clear Hmz]. destruct mz as [z|]; inversion_clear Hmz; split_and?; auto; setoid_subst; eauto using cmra_included_l. - intros [->|(x&y&->&->&[Hz|[z Hz]])]. + exists my. by destruct my. + exists None; by constructor. + exists (Some z); by constructor. Qed. Lemma option_cmra_mixin : CMRAMixin (option A). Proof. apply cmra_total_mixin. - eauto. - by intros n [x|]; destruct 1; constructor; cofe_subst. - destruct 1; by cofe_subst. - by destruct 1; rewrite /validN /option_validN //=; cofe_subst. - intros [x|]; [apply cmra_valid_validN|done]. - intros n [x|]; unfold validN, option_validN; eauto using cmra_validN_S. - intros [x|] [y|] [z|]; constructor; rewrite ?assoc; auto. - intros [x|] [y|]; constructor; rewrite 1?comm; auto. - intros [x|]; simpl; auto. destruct (pcore x) as [cx|] eqn:?; constructor; eauto using cmra_pcore_l. - intros [x|]; simpl; auto. destruct (pcore x) as [cx|] eqn:?; simpl; eauto using cmra_pcore_idemp. - intros mx my; setoid_rewrite option_included. intros [->|(x&y&->&->&[?|?])]; simpl; eauto. + destruct (pcore x) as [cx|] eqn:?; eauto. destruct (cmra_pcore_proper x y cx) as (?&?&?); eauto 10. + destruct (pcore x) as [cx|] eqn:?; eauto. destruct (cmra_pcore_mono x y cx) as (?&?&?); eauto 10. - intros n [x|] [y|]; rewrite /validN /option_validN /=; eauto using cmra_validN_op_l. - intros n mx my1 my2. destruct mx as [x|], my1 as [y1|], my2 as [y2|]; intros Hx Hx'; inversion_clear Hx'; auto. + destruct (cmra_extend n x y1 y2) as (z1&z2&?&?&?); auto. by exists (Some z1), (Some z2); repeat constructor. + by exists (Some x), None; repeat constructor. + by exists None, (Some x); repeat constructor. + exists None, None; repeat constructor. Qed. Canonical Structure optionR := CMRAT (option A) option_cofe_mixin option_cmra_mixin. Global Instance option_cmra_discrete : CMRADiscrete A → CMRADiscrete optionR. Proof. split; [apply _|]. by intros [x|]; [apply (cmra_discrete_valid x)|]. Qed. Instance option_empty : Empty (option A) := None. Lemma option_ucmra_mixin : UCMRAMixin optionR. Proof. split. done. by intros []. done. Qed. Canonical Structure optionUR := UCMRAT (option A) option_cofe_mixin option_cmra_mixin option_ucmra_mixin. (** Misc *) Global Instance Some_cmra_monotone : CMRAMonotone Some. Proof. split; [apply _|done|intros x y [z ->]; by exists (Some z)]. Qed. Global Instance Some_cmra_homomorphism : CMRAHomomorphism Some. Proof. split. apply _. done. Qed. Lemma op_None mx my : mx ⋅ my = None ↔ mx = None ∧ my = None. Proof. destruct mx, my; naive_solver. Qed. Lemma op_is_Some mx my : is_Some (mx ⋅ my) ↔ is_Some mx ∨ is_Some my. Proof. rewrite -!not_eq_None_Some op_None. destruct mx, my; naive_solver. Qed. Global Instance Some_persistent (x : A) : Persistent x → Persistent (Some x). Proof. by constructor. Qed. Global Instance option_persistent (mx : option A) : (∀ x : A, Persistent x) → Persistent mx. Proof. intros. destruct mx; apply _. Qed. Lemma exclusiveN_Some_l n x `{!Exclusive x} my : ✓{n} (Some x ⋅ my) → my = None. Proof. destruct my. move=> /(exclusiveN_l _ x) []. done. Qed. Lemma exclusiveN_Some_r n x `{!Exclusive x} my : ✓{n} (my ⋅ Some x) → my = None. Proof. rewrite comm. by apply exclusiveN_Some_l. Qed. Lemma Some_included x y : Some x ≼ Some y ↔ x ≡ y ∨ x ≼ y. Proof. rewrite option_included; naive_solver. Qed. Lemma Some_included' `{CMRATotal A} x y : Some x ≼ Some y ↔ x ≡ y ∨ x ≼ y. Proof. rewrite Some_included; naive_solver. Qed. Lemma is_Some_included mx my : mx ≼ my → is_Some mx → is_Some my. Proof. rewrite -!not_eq_None_Some option_included. naive_solver. Qed. End option. Arguments optionR : clear implicits. Arguments optionUR : clear implicits. Instance option_fmap_cmra_monotone {A B : cmraT} (f: A → B) `{!CMRAMonotone f} : CMRAMonotone (fmap f : option A → option B). Proof. split; first apply _. - intros n [x|] ?; rewrite /cmra_validN //=. by apply (cmra_monotone_validN f). - intros mx my; rewrite !option_included. intros [->|(x&y&->&->&[Hxy|?])]; simpl; eauto 10 using @cmra_monotone. right; exists (f x), (f y). by rewrite {3}Hxy; eauto. Qed. Program Definition optionURF (F : rFunctor) : urFunctor := {| urFunctor_car A B := optionUR (rFunctor_car F A B); urFunctor_map A1 A2 B1 B2 fg := optionC_map (rFunctor_map F fg) |}. Next Obligation. by intros F A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, rFunctor_ne. Qed. Next Obligation. intros F A B x. rewrite /= -{2}(option_fmap_id x). apply option_fmap_setoid_ext=>y; apply rFunctor_id. Qed. Next Obligation. intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -option_fmap_compose. apply option_fmap_setoid_ext=>y; apply rFunctor_compose. Qed. Instance optionURF_contractive F : rFunctorContractive F → urFunctorContractive (optionURF F). Proof. by intros ? A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, rFunctor_contractive. Qed.