From iris.program_logic Require Export ghost_ownership. From iris.algebra Require Import agree. From iris.prelude Require Import gmap. Import uPred. Class savedPropG (Σ : gFunctors) (F : cFunctor) := saved_prop_inG :> inG Σ (agreeR (laterC (F (iPreProp Σ)))). Definition savedPropΣ (F : cFunctor) : gFunctors := #[ GFunctor (agreeRF (▶ F)) ]. Instance subG_savedPropΣ {Σ F} : subG (savedPropΣ F) Σ → savedPropG Σ F. Proof. apply subG_inG. Qed. Definition saved_prop_own `{savedPropG Σ F} (γ : gname) (x : F (iProp Σ)) : iProp Σ := own γ (to_agree $ Next (cFunctor_map F (iProp_fold, iProp_unfold) x)). Typeclasses Opaque saved_prop_own. Instance: Params (@saved_prop_own) 3. Section saved_prop. Context `{savedPropG Σ F}. Implicit Types x y : F (iProp Σ). Implicit Types γ : gname. Global Instance saved_prop_persistent γ x : PersistentP (saved_prop_own γ x). Proof. rewrite /saved_prop_own; apply _. Qed. Lemma saved_prop_alloc_strong x (G : gset gname) : True =r=> ∃ γ, ■ (γ ∉ G) ∧ saved_prop_own γ x. Proof. by apply own_alloc_strong. Qed. Lemma saved_prop_alloc x : True =r=> ∃ γ, saved_prop_own γ x. Proof. by apply own_alloc. Qed. Lemma saved_prop_agree γ x y : saved_prop_own γ x ★ saved_prop_own γ y ⊢ ▷ (x ≡ y). Proof. rewrite -own_op own_valid agree_validI agree_equivI later_equivI. set (G1 := cFunctor_map F (iProp_fold, iProp_unfold)). set (G2 := cFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)). assert (∀ z, G2 (G1 z) ≡ z) as help. { intros z. rewrite /G1 /G2 -cFunctor_compose -{2}[z]cFunctor_id. apply (ne_proper (cFunctor_map F)); split=>?; apply iProp_fold_unfold. } rewrite -{2}[x]help -{2}[y]help. apply later_mono. apply (eq_rewrite (G1 x) (G1 y) (λ z, G2 (G1 x) ≡ G2 z))%I; first solve_proper; auto with I. Qed. End saved_prop.