From iris.algebra Require Export ofe. Set Primitive Projections. Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). Reserved Notation "'emp'". Reserved Notation "'⌜' φ '⌝'" (at level 1, φ at level 200, format "⌜ φ ⌝"). Reserved Notation "P ∗ Q" (at level 80, right associativity). Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity). Reserved Notation "▷ P" (at level 20, right associativity). Section bi_mixin. Context {PROP : Type} `{Dist PROP, Equiv PROP} (prop_ofe_mixin : OfeMixin PROP). Context (bi_entails : PROP → PROP → Prop). Context (bi_emp : PROP). Context (bi_pure : Prop → PROP). Context (bi_and : PROP → PROP → PROP). Context (bi_or : PROP → PROP → PROP). Context (bi_impl : PROP → PROP → PROP). Context (bi_forall : ∀ A, (A → PROP) → PROP). Context (bi_exist : ∀ A, (A → PROP) → PROP). Context (bi_sep : PROP → PROP → PROP). Context (bi_wand : PROP → PROP → PROP). Context (bi_plainly : PROP → PROP). Context (bi_persistently : PROP → PROP). Context (sbi_internal_eq : ∀ A : ofeT, A → A → PROP). Context (sbi_later : PROP → PROP). Local Infix "⊢" := bi_entails. Local Notation "'emp'" := bi_emp. Local Notation "'True'" := (bi_pure True). Local Notation "'False'" := (bi_pure False). Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp). Local Infix "∧" := bi_and. Local Infix "∨" := bi_or. Local Infix "→" := bi_impl. Local Notation "∀ x .. y , P" := (bi_forall _ (λ x, .. (bi_forall _ (λ y, P)) ..)). Local Notation "∃ x .. y , P" := (bi_exist _ (λ x, .. (bi_exist _ (λ y, P)) ..)). Local Infix "∗" := bi_sep. Local Infix "-∗" := bi_wand. Local Notation "x ≡ y" := (sbi_internal_eq _ x y). Local Notation "▷ P" := (sbi_later P). (** * Axioms for a general BI (logic of bunched implications) *) (** The following axioms are satisifed by both affine and linear BIs, and BIs that combine both kinds of resources. In particular, we have an "ordered RA" model satisfying all these axioms. For this model, we extend RAs with an arbitrary partial order, and up-close resources wrt. that order (instead of extension order). We demand composition to be monotone wrt. the order: [x1 ≼ x2 → x1 ⋅ y ≼ x2 ⋅ y]. We define [emp := λ r, ε ≼ r]; persistently is still defined with the core: [persistently P := λ r, P (core r)]. This is uplcosed because the core is monotone. *) Record BiMixin := { bi_mixin_entails_po : PreOrder bi_entails; bi_mixin_equiv_spec P Q : equiv P Q ↔ (P ⊢ Q) ∧ (Q ⊢ P); (* Non-expansiveness *) bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure; bi_mixin_and_ne : NonExpansive2 bi_and; bi_mixin_or_ne : NonExpansive2 bi_or; bi_mixin_impl_ne : NonExpansive2 bi_impl; bi_mixin_forall_ne A n : Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A); bi_mixin_exist_ne A n : Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A); bi_mixin_sep_ne : NonExpansive2 bi_sep; bi_mixin_wand_ne : NonExpansive2 bi_wand; bi_mixin_plainly_ne : NonExpansive bi_plainly; bi_mixin_persistently_ne : NonExpansive bi_persistently; (* Higher-order logic *) bi_mixin_pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ ⌝; bi_mixin_pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌝ ⊢ P; bi_mixin_pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a ⌝) ⊢ ⌜ ∀ a, φ a ⌝; bi_mixin_and_elim_l P Q : P ∧ Q ⊢ P; bi_mixin_and_elim_r P Q : P ∧ Q ⊢ Q; bi_mixin_and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R; bi_mixin_or_intro_l P Q : P ⊢ P ∨ Q; bi_mixin_or_intro_r P Q : Q ⊢ P ∨ Q; bi_mixin_or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R; bi_mixin_impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R; bi_mixin_impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R; bi_mixin_forall_intro {A} P (Ψ : A → PROP) : (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a; bi_mixin_forall_elim {A} {Ψ : A → PROP} a : (∀ a, Ψ a) ⊢ Ψ a; bi_mixin_exist_intro {A} {Ψ : A → PROP} a : Ψ a ⊢ ∃ a, Ψ a; bi_mixin_exist_elim {A} (Φ : A → PROP) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q; (* BI connectives *) bi_mixin_sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q'; bi_mixin_emp_sep_1 P : P ⊢ emp ∗ P; bi_mixin_emp_sep_2 P : emp ∗ P ⊢ P; bi_mixin_sep_comm' P Q : P ∗ Q ⊢ Q ∗ P; bi_mixin_sep_assoc' P Q R : (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R); bi_mixin_wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R; bi_mixin_wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R; (* Plainly *) (* Note: plainly is about to be removed from this interface *) bi_mixin_plainly_mono P Q : (P ⊢ Q) → bi_plainly P ⊢ bi_plainly Q; bi_mixin_plainly_elim_persistently P : bi_plainly P ⊢ bi_persistently P; bi_mixin_plainly_idemp_2 P : bi_plainly P ⊢ bi_plainly (bi_plainly P); bi_mixin_plainly_forall_2 {A} (Ψ : A → PROP) : (∀ a, bi_plainly (Ψ a)) ⊢ bi_plainly (∀ a, Ψ a); (* The following two laws are very similar, and indeed they hold not just for persistently and plainly, but for any modality defined as `M P n x := ∀ y, R x y → P n y`. *) bi_mixin_persistently_impl_plainly P Q : (bi_plainly P → bi_persistently Q) ⊢ bi_persistently (bi_plainly P → Q); bi_mixin_plainly_impl_plainly P Q : (bi_plainly P → bi_plainly Q) ⊢ bi_plainly (bi_plainly P → Q); bi_mixin_plainly_emp_intro P : P ⊢ bi_plainly emp; bi_mixin_plainly_absorbing P Q : bi_plainly P ∗ Q ⊢ bi_plainly P; (* Persistently *) (* In the ordered RA model: Holds without further assumptions. *) bi_mixin_persistently_mono P Q : (P ⊢ Q) → bi_persistently P ⊢ bi_persistently Q; (* In the ordered RA model: `core` is idempotent *) bi_mixin_persistently_idemp_2 P : bi_persistently P ⊢ bi_persistently (bi_persistently P); (* In the ordered RA model [P ⊢ persisently emp] (which can currently still be derived from the plainly axioms, which will be removed): `ε ≼ core x` *) bi_mixin_persistently_forall_2 {A} (Ψ : A → PROP) : (∀ a, bi_persistently (Ψ a)) ⊢ bi_persistently (∀ a, Ψ a); bi_mixin_persistently_exist_1 {A} (Ψ : A → PROP) : bi_persistently (∃ a, Ψ a) ⊢ ∃ a, bi_persistently (Ψ a); (* In the ordered RA model: [core x ≼ core (x ⋅ y)]. Note that this implies that the core is monotone. *) bi_mixin_persistently_absorbing P Q : bi_persistently P ∗ Q ⊢ bi_persistently P; (* In the ordered RA model: [x ⋅ core x = core x]. *) bi_mixin_persistently_and_sep_elim P Q : bi_persistently P ∧ Q ⊢ P ∗ Q; }. Record SbiMixin := { sbi_mixin_later_contractive : Contractive sbi_later; sbi_mixin_internal_eq_ne (A : ofeT) : NonExpansive2 (sbi_internal_eq A); (* Equality *) sbi_mixin_internal_eq_refl {A : ofeT} P (a : A) : P ⊢ a ≡ a; sbi_mixin_internal_eq_rewrite {A : ofeT} a b (Ψ : A → PROP) : NonExpansive Ψ → a ≡ b ⊢ Ψ a → Ψ b; sbi_mixin_fun_ext {A} {B : A → ofeT} (f g : ofe_fun B) : (∀ x, f x ≡ g x) ⊢ f ≡ g; sbi_mixin_sig_eq {A : ofeT} (P : A → Prop) (x y : sig P) : `x ≡ `y ⊢ x ≡ y; sbi_mixin_discrete_eq_1 {A : ofeT} (a b : A) : Discrete a → a ≡ b ⊢ ⌜a ≡ b⌝; sbi_mixin_prop_ext P Q : bi_plainly ((P → Q) ∧ (Q → P)) ⊢ sbi_internal_eq (OfeT PROP prop_ofe_mixin) P Q; (* Later *) sbi_mixin_later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢ ▷ (x ≡ y); sbi_mixin_later_eq_2 {A : ofeT} (x y : A) : ▷ (x ≡ y) ⊢ Next x ≡ Next y; sbi_mixin_later_mono P Q : (P ⊢ Q) → ▷ P ⊢ ▷ Q; sbi_mixin_löb P : (▷ P → P) ⊢ P; sbi_mixin_later_forall_2 {A} (Φ : A → PROP) : (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a; sbi_mixin_later_exist_false {A} (Φ : A → PROP) : (▷ ∃ a, Φ a) ⊢ ▷ False ∨ (∃ a, ▷ Φ a); sbi_mixin_later_sep_1 P Q : ▷ (P ∗ Q) ⊢ ▷ P ∗ ▷ Q; sbi_mixin_later_sep_2 P Q : ▷ P ∗ ▷ Q ⊢ ▷ (P ∗ Q); sbi_mixin_later_plainly_1 P : ▷ bi_plainly P ⊢ bi_plainly (▷ P); sbi_mixin_later_plainly_2 P : bi_plainly (▷ P) ⊢ ▷ bi_plainly P; sbi_mixin_later_persistently_1 P : ▷ bi_persistently P ⊢ bi_persistently (▷ P); sbi_mixin_later_persistently_2 P : bi_persistently (▷ P) ⊢ ▷ bi_persistently P; sbi_mixin_later_false_em P : ▷ P ⊢ ▷ False ∨ (▷ False → P); }. End bi_mixin. Structure bi := Bi { bi_car :> Type; bi_dist : Dist bi_car; bi_equiv : Equiv bi_car; bi_entails : bi_car → bi_car → Prop; bi_emp : bi_car; bi_pure : Prop → bi_car; bi_and : bi_car → bi_car → bi_car; bi_or : bi_car → bi_car → bi_car; bi_impl : bi_car → bi_car → bi_car; bi_forall : ∀ A, (A → bi_car) → bi_car; bi_exist : ∀ A, (A → bi_car) → bi_car; bi_sep : bi_car → bi_car → bi_car; bi_wand : bi_car → bi_car → bi_car; bi_plainly : bi_car → bi_car; bi_persistently : bi_car → bi_car; bi_ofe_mixin : OfeMixin bi_car; bi_bi_mixin : BiMixin bi_entails bi_emp bi_pure bi_and bi_or bi_impl bi_forall bi_exist bi_sep bi_wand bi_plainly bi_persistently; }. Coercion bi_ofeC (PROP : bi) : ofeT := OfeT PROP (bi_ofe_mixin PROP). Canonical Structure bi_ofeC. Instance: Params (@bi_entails) 1. Instance: Params (@bi_emp) 1. Instance: Params (@bi_pure) 1. Instance: Params (@bi_and) 1. Instance: Params (@bi_or) 1. Instance: Params (@bi_impl) 1. Instance: Params (@bi_forall) 2. Instance: Params (@bi_exist) 2. Instance: Params (@bi_sep) 1. Instance: Params (@bi_wand) 1. Instance: Params (@bi_plainly) 1. Instance: Params (@bi_persistently) 1. Delimit Scope bi_scope with I. Arguments bi_car : simpl never. Arguments bi_dist : simpl never. Arguments bi_equiv : simpl never. Arguments bi_entails {PROP} _%I _%I : simpl never, rename. Arguments bi_emp {PROP} : simpl never, rename. Arguments bi_pure {PROP} _%stdpp : simpl never, rename. Arguments bi_and {PROP} _%I _%I : simpl never, rename. Arguments bi_or {PROP} _%I _%I : simpl never, rename. Arguments bi_impl {PROP} _%I _%I : simpl never, rename. Arguments bi_forall {PROP _} _%I : simpl never, rename. Arguments bi_exist {PROP _} _%I : simpl never, rename. Arguments bi_sep {PROP} _%I _%I : simpl never, rename. Arguments bi_wand {PROP} _%I _%I : simpl never, rename. Arguments bi_plainly {PROP} _%I : simpl never, rename. Arguments bi_persistently {PROP} _%I : simpl never, rename. Structure sbi := Sbi { sbi_car :> Type; sbi_dist : Dist sbi_car; sbi_equiv : Equiv sbi_car; sbi_entails : sbi_car → sbi_car → Prop; sbi_emp : sbi_car; sbi_pure : Prop → sbi_car; sbi_and : sbi_car → sbi_car → sbi_car; sbi_or : sbi_car → sbi_car → sbi_car; sbi_impl : sbi_car → sbi_car → sbi_car; sbi_forall : ∀ A, (A → sbi_car) → sbi_car; sbi_exist : ∀ A, (A → sbi_car) → sbi_car; sbi_sep : sbi_car → sbi_car → sbi_car; sbi_wand : sbi_car → sbi_car → sbi_car; sbi_plainly : sbi_car → sbi_car; sbi_persistently : sbi_car → sbi_car; sbi_internal_eq : ∀ A : ofeT, A → A → sbi_car; sbi_later : sbi_car → sbi_car; sbi_ofe_mixin : OfeMixin sbi_car; sbi_bi_mixin : BiMixin sbi_entails sbi_emp sbi_pure sbi_and sbi_or sbi_impl sbi_forall sbi_exist sbi_sep sbi_wand sbi_plainly sbi_persistently; sbi_sbi_mixin : SbiMixin sbi_ofe_mixin sbi_entails sbi_pure sbi_and sbi_or sbi_impl sbi_forall sbi_exist sbi_sep sbi_plainly sbi_persistently sbi_internal_eq sbi_later; }. Instance: Params (@sbi_later) 1. Instance: Params (@sbi_internal_eq) 1. Arguments sbi_later {PROP} _%I : simpl never, rename. Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename. Coercion sbi_ofeC (PROP : sbi) : ofeT := OfeT PROP (sbi_ofe_mixin PROP). Canonical Structure sbi_ofeC. Coercion sbi_bi (PROP : sbi) : bi := {| bi_ofe_mixin := sbi_ofe_mixin PROP; bi_bi_mixin := sbi_bi_mixin PROP |}. Canonical Structure sbi_bi. Arguments sbi_car : simpl never. Arguments sbi_dist : simpl never. Arguments sbi_equiv : simpl never. Arguments sbi_entails {PROP} _%I _%I : simpl never, rename. Arguments sbi_emp {PROP} : simpl never, rename. Arguments sbi_pure {PROP} _%stdpp : simpl never, rename. Arguments sbi_and {PROP} _%I _%I : simpl never, rename. Arguments sbi_or {PROP} _%I _%I : simpl never, rename. Arguments sbi_impl {PROP} _%I _%I : simpl never, rename. Arguments sbi_forall {PROP _} _%I : simpl never, rename. Arguments sbi_exist {PROP _} _%I : simpl never, rename. Arguments sbi_sep {PROP} _%I _%I : simpl never, rename. Arguments sbi_wand {PROP} _%I _%I : simpl never, rename. Arguments sbi_plainly {PROP} _%I : simpl never, rename. Arguments sbi_persistently {PROP} _%I : simpl never, rename. Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename. Arguments sbi_later {PROP} _%I : simpl never, rename. Hint Extern 0 (bi_entails _ _) => reflexivity. Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP). Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True). Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope. Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope. Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) (at level 95, no associativity) : stdpp_scope. Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope. Notation "P -∗ Q" := (P ⊢ Q) : stdpp_scope. Notation "'emp'" := (bi_emp) : bi_scope. Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope. Notation "'True'" := (bi_pure True) : bi_scope. Notation "'False'" := (bi_pure False) : bi_scope. Infix "∧" := bi_and : bi_scope. Notation "(∧)" := bi_and (only parsing) : bi_scope. Infix "∨" := bi_or : bi_scope. Notation "(∨)" := bi_or (only parsing) : bi_scope. Infix "→" := bi_impl : bi_scope. Infix "∗" := bi_sep : bi_scope. Notation "(∗)" := bi_sep (only parsing) : bi_scope. Notation "P -∗ Q" := (bi_wand P Q) : bi_scope. Notation "∀ x .. y , P" := (bi_forall (λ x, .. (bi_forall (λ y, P)) ..)%I) : bi_scope. Notation "∃ x .. y , P" := (bi_exist (λ x, .. (bi_exist (λ y, P)) ..)%I) : bi_scope. Infix "≡" := sbi_internal_eq : bi_scope. Notation "▷ P" := (sbi_later P) : bi_scope. Coercion bi_valid {PROP : bi} (P : PROP) : Prop := emp ⊢ P. Coercion sbi_valid {PROP : sbi} : PROP → Prop := bi_valid. Arguments bi_valid {_} _%I : simpl never. Typeclasses Opaque bi_valid. Module bi. Section bi_laws. Context {PROP : bi}. Implicit Types φ : Prop. Implicit Types P Q R : PROP. Implicit Types A : Type. (* About the entailment *) Global Instance entails_po : PreOrder (@bi_entails PROP). Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed. Lemma equiv_spec P Q : P ≡ Q ↔ (P ⊢ Q) ∧ (Q ⊢ P). Proof. eapply bi_mixin_equiv_spec, bi_bi_mixin. Qed. (* Non-expansiveness *) Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP). Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed. Global Instance and_ne : NonExpansive2 (@bi_and PROP). Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed. Global Instance or_ne : NonExpansive2 (@bi_or PROP). Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed. Global Instance impl_ne : NonExpansive2 (@bi_impl PROP). Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed. Global Instance forall_ne A n : Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A). Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed. Global Instance exist_ne A n : Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A). Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed. Global Instance sep_ne : NonExpansive2 (@bi_sep PROP). Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed. Global Instance wand_ne : NonExpansive2 (@bi_wand PROP). Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed. Global Instance plainly_ne : NonExpansive (@bi_plainly PROP). Proof. eapply bi_mixin_plainly_ne, bi_bi_mixin. Qed. Global Instance persistently_ne : NonExpansive (@bi_persistently PROP). Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed. (* Higher-order logic *) Lemma pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ ⌝. Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed. Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌝ ⊢ P. Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed. Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a ⌝ : PROP) ⊢ ⌜ ∀ a, φ a ⌝. Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed. Lemma and_elim_l P Q : P ∧ Q ⊢ P. Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed. Lemma and_elim_r P Q : P ∧ Q ⊢ Q. Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed. Lemma and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R. Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed. Lemma or_intro_l P Q : P ⊢ P ∨ Q. Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed. Lemma or_intro_r P Q : Q ⊢ P ∨ Q. Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed. Lemma or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R. Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed. Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R. Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed. Lemma impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R. Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed. Lemma forall_intro {A} P (Ψ : A → PROP) : (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a. Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed. Lemma forall_elim {A} {Ψ : A → PROP} a : (∀ a, Ψ a) ⊢ Ψ a. Proof. eapply (bi_mixin_forall_elim bi_entails), bi_bi_mixin. Qed. Lemma exist_intro {A} {Ψ : A → PROP} a : Ψ a ⊢ ∃ a, Ψ a. Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed. Lemma exist_elim {A} (Φ : A → PROP) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q. Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed. (* BI connectives *) Lemma sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q'. Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed. Lemma emp_sep_1 P : P ⊢ emp ∗ P. Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed. Lemma emp_sep_2 P : emp ∗ P ⊢ P. Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed. Lemma sep_comm' P Q : P ∗ Q ⊢ Q ∗ P. Proof. eapply (bi_mixin_sep_comm' bi_entails), bi_bi_mixin. Qed. Lemma sep_assoc' P Q R : (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R). Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed. Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R. Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed. Lemma wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R. Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed. (* Plainly *) Lemma plainly_mono P Q : (P ⊢ Q) → bi_plainly P ⊢ bi_plainly Q. Proof. eapply bi_mixin_plainly_mono, bi_bi_mixin. Qed. Lemma plainly_elim_persistently P : bi_plainly P ⊢ bi_persistently P. Proof. eapply bi_mixin_plainly_elim_persistently, bi_bi_mixin. Qed. Lemma plainly_idemp_2 P : bi_plainly P ⊢ bi_plainly (bi_plainly P). Proof. eapply bi_mixin_plainly_idemp_2, bi_bi_mixin. Qed. Lemma plainly_forall_2 {A} (Ψ : A → PROP) : (∀ a, bi_plainly (Ψ a)) ⊢ bi_plainly (∀ a, Ψ a). Proof. eapply bi_mixin_plainly_forall_2, bi_bi_mixin. Qed. Lemma persistently_impl_plainly P Q : (bi_plainly P → bi_persistently Q) ⊢ bi_persistently (bi_plainly P → Q). Proof. eapply bi_mixin_persistently_impl_plainly, bi_bi_mixin. Qed. Lemma plainly_impl_plainly P Q : (bi_plainly P → bi_plainly Q) ⊢ bi_plainly (bi_plainly P → Q). Proof. eapply bi_mixin_plainly_impl_plainly, bi_bi_mixin. Qed. Lemma plainly_absorbing P Q : bi_plainly P ∗ Q ⊢ bi_plainly P. Proof. eapply (bi_mixin_plainly_absorbing bi_entails), bi_bi_mixin. Qed. Lemma plainly_emp_intro P : P ⊢ bi_plainly emp. Proof. eapply bi_mixin_plainly_emp_intro, bi_bi_mixin. Qed. (* Persistently *) Lemma persistently_mono P Q : (P ⊢ Q) → bi_persistently P ⊢ bi_persistently Q. Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed. Lemma persistently_idemp_2 P : bi_persistently P ⊢ bi_persistently (bi_persistently P). Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed. Lemma persistently_forall_2 {A} (Ψ : A → PROP) : (∀ a, bi_persistently (Ψ a)) ⊢ bi_persistently (∀ a, Ψ a). Proof. eapply bi_mixin_persistently_forall_2, bi_bi_mixin. Qed. Lemma persistently_exist_1 {A} (Ψ : A → PROP) : bi_persistently (∃ a, Ψ a) ⊢ ∃ a, bi_persistently (Ψ a). Proof. eapply bi_mixin_persistently_exist_1, bi_bi_mixin. Qed. Lemma persistently_absorbing P Q : bi_persistently P ∗ Q ⊢ bi_persistently P. Proof. eapply (bi_mixin_persistently_absorbing bi_entails), bi_bi_mixin. Qed. Lemma persistently_and_sep_elim P Q : bi_persistently P ∧ Q ⊢ P ∗ Q. Proof. eapply (bi_mixin_persistently_and_sep_elim bi_entails), bi_bi_mixin. Qed. End bi_laws. Section sbi_laws. Context {PROP : sbi}. Implicit Types φ : Prop. Implicit Types P Q R : PROP. (* Equality *) Global Instance internal_eq_ne (A : ofeT) : NonExpansive2 (@sbi_internal_eq PROP A). Proof. eapply sbi_mixin_internal_eq_ne, sbi_sbi_mixin. Qed. Lemma internal_eq_refl {A : ofeT} P (a : A) : P ⊢ a ≡ a. Proof. eapply sbi_mixin_internal_eq_refl, sbi_sbi_mixin. Qed. Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A → PROP) : NonExpansive Ψ → a ≡ b ⊢ Ψ a → Ψ b. Proof. eapply sbi_mixin_internal_eq_rewrite, sbi_sbi_mixin. Qed. Lemma fun_ext {A} {B : A → ofeT} (f g : ofe_fun B) : (∀ x, f x ≡ g x) ⊢ (f ≡ g : PROP). Proof. eapply sbi_mixin_fun_ext, sbi_sbi_mixin. Qed. Lemma sig_eq {A : ofeT} (P : A → Prop) (x y : sig P) : `x ≡ `y ⊢ (x ≡ y : PROP). Proof. eapply sbi_mixin_sig_eq, sbi_sbi_mixin. Qed. Lemma discrete_eq_1 {A : ofeT} (a b : A) : Discrete a → a ≡ b ⊢ (⌜a ≡ b⌝ : PROP). Proof. eapply sbi_mixin_discrete_eq_1, sbi_sbi_mixin. Qed. Lemma prop_ext P Q : bi_plainly ((P → Q) ∧ (Q → P)) ⊢ P ≡ Q. Proof. eapply (sbi_mixin_prop_ext _ bi_entails), sbi_sbi_mixin. Qed. (* Later *) Global Instance later_contractive : Contractive (@sbi_later PROP). Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed. Lemma later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢ ▷ (x ≡ y : PROP). Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed. Lemma later_eq_2 {A : ofeT} (x y : A) : ▷ (x ≡ y) ⊢ (Next x ≡ Next y : PROP). Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed. Lemma later_mono P Q : (P ⊢ Q) → ▷ P ⊢ ▷ Q. Proof. eapply sbi_mixin_later_mono, sbi_sbi_mixin. Qed. Lemma löb P : (▷ P → P) ⊢ P. Proof. eapply sbi_mixin_löb, sbi_sbi_mixin. Qed. Lemma later_forall_2 {A} (Φ : A → PROP) : (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a. Proof. eapply sbi_mixin_later_forall_2, sbi_sbi_mixin. Qed. Lemma later_exist_false {A} (Φ : A → PROP) : (▷ ∃ a, Φ a) ⊢ ▷ False ∨ (∃ a, ▷ Φ a). Proof. eapply sbi_mixin_later_exist_false, sbi_sbi_mixin. Qed. Lemma later_sep_1 P Q : ▷ (P ∗ Q) ⊢ ▷ P ∗ ▷ Q. Proof. eapply sbi_mixin_later_sep_1, sbi_sbi_mixin. Qed. Lemma later_sep_2 P Q : ▷ P ∗ ▷ Q ⊢ ▷ (P ∗ Q). Proof. eapply sbi_mixin_later_sep_2, sbi_sbi_mixin. Qed. Lemma later_plainly_1 P : ▷ bi_plainly P ⊢ bi_plainly (▷ P). Proof. eapply (sbi_mixin_later_plainly_1 _ bi_entails), sbi_sbi_mixin. Qed. Lemma later_plainly_2 P : bi_plainly (▷ P) ⊢ ▷ bi_plainly P. Proof. eapply (sbi_mixin_later_plainly_2 _ bi_entails), sbi_sbi_mixin. Qed. Lemma later_persistently_1 P : ▷ bi_persistently P ⊢ bi_persistently (▷ P). Proof. eapply (sbi_mixin_later_persistently_1 _ bi_entails), sbi_sbi_mixin. Qed. Lemma later_persistently_2 P : bi_persistently (▷ P) ⊢ ▷ bi_persistently P. Proof. eapply (sbi_mixin_later_persistently_2 _ bi_entails), sbi_sbi_mixin. Qed. Lemma later_false_em P : ▷ P ⊢ ▷ False ∨ (▷ False → P). Proof. eapply sbi_mixin_later_false_em, sbi_sbi_mixin. Qed. End sbi_laws. End bi.