Require Import world_prop core_lang lang masks.
Require Import RecDom.PCM RecDom.UPred RecDom.BI RecDom.PreoMet RecDom.Finmap.
Module Iris (RL : PCM_T) (C : CORE_LANG).
Module Import L := Lang C.
Module Import R <: PCM_T.
Definition res := (pcm_res_ex state * RL.res)%type.
Instance res_op : PCM_op res := _.
Instance res_unit : PCM_unit res := _.
Instance res_pcm : PCM res := _.
End R.
Module Import WP := WorldProp R.
Delimit Scope iris_scope with iris.
Local Open Scope iris_scope.
(** The final thing we'd like to check is that the space of
propositions does indeed form a complete BI algebra.
The following instance declaration checks that an instance of
the complete BI class can be found for Props (and binds it with
a low priority to potentially speed up the proof search).
*)
Instance Props_BI : ComplBI Props | 0 := _.
Instance Props_Later : Later Props | 0 := _.
(** And now we're ready to build the IRIS-specific connectives! *)
Section Necessitation.
(** Note: this could be moved to BI, since it's possible to define
for any UPred over a monoid. **)
Local Obligation Tactic := intros; resp_set || eauto with typeclass_instances.
Program Definition box : Props -n> Props :=
n[(fun p => m[(fun w => mkUPred (fun n r => p w n (pcm_unit _)) _)])].
Next Obligation.
intros n m r s HLe _ Hp; rewrite HLe; assumption.
Qed.
Next Obligation.
intros w1 w2 EQw m r HLt; simpl.
eapply (met_morph_nonexp _ _ p); eassumption.
Qed.
Next Obligation.
intros w1 w2 Subw n r; simpl.
apply p; assumption.
Qed.
Next Obligation.
intros p1 p2 EQp w m r HLt; simpl.
apply EQp; assumption.
Qed.
End Necessitation.
(** "Internal" equality **)
Section IntEq.
Context {T} `{mT : metric T}.
Program Definition intEqP (t1 t2 : T) : UPred res :=
mkUPred (fun n r => t1 = S n = t2) _.
Next Obligation.
intros n1 n2 _ _ HLe _; apply mono_dist; now auto with arith.
Qed.
Definition intEq (t1 t2 : T) : Props := pcmconst (intEqP t1 t2).
Instance intEq_equiv : Proper (equiv ==> equiv ==> equiv) intEqP.
Proof.
intros l1 l2 EQl r1 r2 EQr n r.
split; intros HEq; do 2 red.
- rewrite <- EQl, <- EQr; assumption.
- rewrite EQl, EQr; assumption.
Qed.
Instance intEq_dist n : Proper (dist n ==> dist n ==> dist n) intEqP.
Proof.
intros l1 l2 EQl r1 r2 EQr m r HLt.
split; intros HEq; do 2 red.
- etransitivity; [| etransitivity; [apply HEq |] ];
apply mono_dist with n; eassumption || now auto with arith.
- etransitivity; [| etransitivity; [apply HEq |] ];
apply mono_dist with n; eassumption || now auto with arith.
Qed.
End IntEq.
Notation "t1 '===' t2" := (intEq t1 t2) (at level 70) : iris_scope.
Section Invariants.
(** Invariants **)
Definition invP (i : nat) (p : Props) (w : Wld) : UPred res :=
intEqP (w i) (Some (ı' p)).
Program Definition inv i : Props -n> Props :=
n[(fun p => m[(invP i p)])].
Next Obligation.
intros w1 w2 EQw; unfold equiv, invP in *.
apply intEq_equiv; [apply EQw | reflexivity].
Qed.
Next Obligation.
intros w1 w2 EQw; unfold invP; simpl morph.
destruct n; [apply dist_bound |].
apply intEq_dist; [apply EQw | reflexivity].
Qed.
Next Obligation.
intros w1 w2 Sw; unfold invP; simpl morph.
intros n r HP; do 2 red; specialize (Sw i); do 2 red in HP.
destruct (w1 i) as [μ1 |]; [| contradiction].
destruct (w2 i) as [μ2 |]; [| contradiction]; simpl in Sw.
rewrite <- Sw; assumption.
Qed.
Next Obligation.
intros p1 p2 EQp w; unfold equiv, invP in *; simpl morph.
apply intEq_equiv; [reflexivity |].
rewrite EQp; reflexivity.
Qed.
Next Obligation.
intros p1 p2 EQp w; unfold invP; simpl morph.
apply intEq_dist; [reflexivity |].
apply dist_mono, (met_morph_nonexp _ _ ı'), EQp.
Qed.
End Invariants.
Notation "□ p" := (box p) (at level 30, right associativity) : iris_scope.
Notation "⊤" := (top : Props) : iris_scope.
Notation "⊥" := (bot : Props) : iris_scope.
Notation "p ∧ q" := (and p q : Props) (at level 40, left associativity) : iris_scope.
Notation "p ∨ q" := (or p q : Props) (at level 50, left associativity) : iris_scope.
Notation "p * q" := (sc p q : Props) (at level 40, left associativity) : iris_scope.
Notation "p → q" := (BI.impl p q : Props) (at level 55, right associativity) : iris_scope.
Notation "p '-*' q" := (si p q : Props) (at level 55, right associativity) : iris_scope.
Notation "∀ x , p" := (all n[(fun x => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
Notation "∃ x , p" := (all n[(fun x => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
Notation "∀ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
Notation "∃ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
(** Ownership **)
Definition ownR (r : res) : Props :=
pcmconst (up_cr (pord r)).
(** Physical part **)
Definition ownRP (r : pcm_res_ex state) : Props :=
ownR (r, pcm_unit _).
(** Logical part **)
Definition ownRL (r : RL.res) : Props :=
ownR (pcm_unit _, r).
(** Proper physical state: ownership of the machine state **)
Instance state_type : Setoid state := discreteType.
Instance state_metr : metric state := discreteMetric.
Instance state_cmetr : cmetric state := discreteCMetric.
Program Definition ownS : state -n> Props :=
n[(fun s => ownRP (ex_own _ s))].
Next Obligation.
intros r1 r2 EQr. hnf in EQr. now rewrite EQr.
Qed.
Next Obligation.
intros r1 r2 EQr; destruct n as [| n]; [apply dist_bound |].
simpl in EQr. subst; reflexivity.
Qed.
(** Proper ghost state: ownership of logical w/ possibility of undefined **)
Lemma ores_equiv_eq T `{pcmT : PCM T} (r1 r2 : option T) (HEq : r1 == r2) : r1 = r2.
Proof.
destruct r1 as [r1 |]; destruct r2 as [r2 |]; try contradiction;
simpl in HEq; subst; reflexivity.
Qed.
Instance logR_metr : metric RL.res := discreteMetric.
Instance logR_cmetr : cmetric RL.res := discreteCMetric.
Program Definition ownL : (option RL.res) -n> Props :=
n[(fun r => match r with
| Some r => ownRL r
| None => ⊥
end)].
Next Obligation.
intros r1 r2 EQr; apply ores_equiv_eq in EQr; now rewrite EQr.
Qed.
Next Obligation.
intros r1 r2 EQr; destruct n as [| n]; [apply dist_bound |].
destruct r1 as [r1 |]; destruct r2 as [r2 |]; try contradiction; simpl in EQr; subst; reflexivity.
Qed.
(** Lemmas about box **)
Lemma box_intro p q (Hpq : □ p ⊑ q) :
□ p ⊑ □ q.
Proof.
intros w n r Hp; simpl; apply Hpq, Hp.
Qed.
Lemma box_elim p :
□ p ⊑ p.
Proof.
intros w n r Hp; simpl in Hp.
eapply uni_pred, Hp; [reflexivity |].
exists r; now erewrite comm, pcm_op_unit by apply _.
Qed.
Lemma box_top : ⊤ == □ ⊤.
Proof.
intros w n r; simpl; unfold const; reflexivity.
Qed.
(** Ghost state ownership **)
Lemma ownL_sc (u t : option RL.res) :
ownL (u · t)%pcm == ownL u * ownL t.
Proof.
intros w n r; split; [intros Hut | intros [r1 [r2 [EQr [Hu Ht] ] ] ] ].
- destruct (u · t)%pcm as [ut |] eqn: EQut; [| contradiction].
do 15 red in Hut; rewrite <- Hut.
destruct u as [u |]; [| now erewrite pcm_op_zero in EQut by apply _].
assert (HT := comm (Some u) t); rewrite EQut in HT.
destruct t as [t |]; [| now erewrite pcm_op_zero in HT by apply _]; clear HT.
exists (pcm_unit (pcm_res_ex state), u) (pcm_unit (pcm_res_ex state), t).
split; [unfold pcm_op, res_op, pcm_op_prod | split; do 15 red; reflexivity].
now erewrite pcm_op_unit, EQut by apply _.
- destruct u as [u |]; [| contradiction]; destruct t as [t |]; [| contradiction].
destruct Hu as [ru EQu]; destruct Ht as [rt EQt].
rewrite <- EQt, assoc, (comm (Some r1)) in EQr.
rewrite <- EQu, assoc, <- (assoc (Some rt · Some ru)%pcm) in EQr.
unfold pcm_op at 3, res_op at 4, pcm_op_prod at 1 in EQr.
erewrite pcm_op_unit in EQr by apply _; clear EQu EQt.
destruct (Some u · Some t)%pcm as [ut |];
[| now erewrite comm, pcm_op_zero in EQr by apply _].
destruct (Some rt · Some ru)%pcm as [rut |];
[| now erewrite pcm_op_zero in EQr by apply _].
exists rut; assumption.
(* TODO: own 0 = False, own 1 = True *)
Qed.
(** Timeless *)
Definition timelessP (p : Props) w n :=
forall w' k r (HSw : w ⊑ w') (HLt : k < n) (Hp : p w' k r), p w' (S k) r.
Program Definition timeless (p : Props) : Props :=
m[(fun w => mkUPred (fun n r => timelessP p w n) _)].
Next Obligation.
intros n1 n2 _ _ HLe _ HT w' k r HSw HLt Hp; eapply HT, Hp; [eassumption |].
now eauto with arith.
Qed.
Next Obligation.
intros w1 w2 EQw n rr; simpl; split; intros HT k r HLt;
[rewrite <- EQw | rewrite EQw]; apply HT; assumption.
Qed.
Next Obligation.
intros w1 w2 EQw k; simpl; intros _ HLt; destruct n as [| n]; [now inversion HLt |].
split; intros HT w' m r HSw HLt' Hp.
- symmetry in EQw; assert (HD := extend_dist _ _ _ _ EQw HSw); assert (HS := extend_sub _ _ _ _ EQw HSw).
apply (met_morph_nonexp _ _ p) in HD; apply HD, HT, HD, Hp; now (assumption || eauto with arith).
- assert (HD := extend_dist _ _ _ _ EQw HSw); assert (HS := extend_sub _ _ _ _ EQw HSw).
apply (met_morph_nonexp _ _ p) in HD; apply HD, HT, HD, Hp; now (assumption || eauto with arith).
Qed.
Next Obligation.
intros w1 w2 HSw n; simpl; intros _ HT w' m r HSw' HLt Hp.
eapply HT, Hp; [etransitivity |]; eassumption.
Qed.
Section Erasure.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
(* First, we need to erase a finite map. This won't be pretty, for
now, since the library does not provide enough
constructs. Hopefully we can provide a fold that'd work for
that at some point
*)
Fixpoint comp_list (xs : list res) : option res :=
match xs with
| nil => 1
| (x :: xs)%list => Some x · comp_list xs
end.
Definition cod (m : nat -f> res) : list res := List.map snd (findom_t m).
Definition erase (m : nat -f> res) : option res := comp_list (cod m).
Lemma erase_remove (rs : nat -f> res) i r (HLu : rs i = Some r) :
erase rs == Some r · erase (fdRemove i rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
induction rs as [| [j s] ]; [discriminate |]; simpl comp_list; simpl in HLu.
destruct (comp i j); [inversion HLu; reflexivity | discriminate |].
simpl comp_list; rewrite IHrs by eauto using SS_tail.
rewrite !assoc, (comm (Some s)); reflexivity.
Qed.
Lemma erase_insert_new (rs : nat -f> res) i r (HNLu : rs i = None) :
Some r · erase rs == erase (fdUpdate i r rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
induction rs as [| [j s] ]; [reflexivity | simpl comp_list; simpl in HNLu].
destruct (comp i j); [discriminate | reflexivity |].
simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
rewrite !assoc, (comm (Some r)); reflexivity.
Qed.
Lemma erase_insert_old (rs : nat -f> res) i r1 r2 r
(HLu : rs i = Some r1) (HEq : Some r1 · Some r2 == Some r) :
Some r2 · erase rs == erase (fdUpdate i r rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
induction rs as [| [j s] ]; [discriminate |]; simpl comp_list; simpl in HLu.
destruct (comp i j); [inversion HLu; subst; clear HLu | discriminate |].
- simpl comp_list; rewrite assoc, (comm (Some r2)), <- HEq; reflexivity.
- simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
rewrite !assoc, (comm (Some r2)); reflexivity.
Qed.
Definition erase_state (r: option res) σ: Prop := match r with
| Some (ex_own s, _) => s = σ
| _ => False
end.
Global Instance preo_unit : preoType () := disc_preo ().
Program Definition erasure (σ : state) (m : mask) (r s : option res) (w : Wld) : UPred () :=
▹ (mkUPred (fun n _ =>
erase_state (r · s) σ
/\ exists rs : nat -f> res,
erase rs == s /\
forall i (Hm : m i),
(i ∈ dom rs <-> i ∈ dom w) /\
forall π ri (HLw : w i == Some π) (HLrs : rs i == Some ri),
ı π w n ri) _).
Next Obligation.
intros n1 n2 _ _ HLe _ [HES HRS]; split; [assumption |].
setoid_rewrite HLe; eassumption.
Qed.
Global Instance erasure_equiv σ : Proper (meq ==> equiv ==> equiv ==> equiv ==> equiv) (erasure σ).
Proof.
intros m1 m2 EQm r r' EQr s s' EQs w1 w2 EQw [| n] []; [reflexivity |];
apply ores_equiv_eq in EQr; apply ores_equiv_eq in EQs; subst r' s'.
split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
- split; [assumption | intros; apply EQm in Hm; split; [| setoid_rewrite <- EQw; apply HM, Hm] ].
destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
rewrite fdLookup_in; setoid_rewrite EQw; rewrite <- fdLookup_in; reflexivity.
- split; [assumption | intros; apply EQm in Hm; split; [| setoid_rewrite EQw; apply HM, Hm] ].
destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
rewrite fdLookup_in; setoid_rewrite <- EQw; rewrite <- fdLookup_in; reflexivity.
Qed.
Global Instance erasure_dist n σ m r s : Proper (dist n ==> dist n) (erasure σ m r s).
Proof.
intros w1 w2 EQw [| n'] [] HLt; [reflexivity |]; destruct n as [| n]; [now inversion HLt |].
split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
- split; [assumption | split; [rewrite <- (domeq _ _ _ EQw); apply HM, Hm |] ].
intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
destruct (w1 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
apply ı in EQπ; apply EQπ; [now auto with arith |].
apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
apply HR; [reflexivity | assumption].
- split; [assumption | split; [rewrite (domeq _ _ _ EQw); apply HM, Hm |] ].
intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
destruct (w2 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
apply ı in EQπ; apply EQπ; [now auto with arith |].
apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
apply HR; [reflexivity | assumption].
Qed.
Lemma erasure_not_empty σ m r s w k (HN : r · s == 0) :
~ erasure σ m r s w (S k) tt.
Proof.
intros [HD _]; apply ores_equiv_eq in HN; setoid_rewrite HN in HD.
exact HD.
Qed.
End Erasure.
Notation " p @ k " := ((p : UPred ()) k tt) (at level 60, no associativity).
Section ViewShifts.
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Obligation Tactic := intros.
Program Definition preVS (m1 m2 : mask) (p : Props) (w : Wld) : UPred res :=
mkUPred (fun n r => forall w1 rf s mf σ k (HSub : w ⊑ w1) (HLe : k < n)
(HD : mf # m1 ∪ m2)
(HE : erasure σ (m1 ∪ mf) (Some r · rf) s w1 @ S k),
exists w2 r' s',
w1 ⊑ w2 /\ p w2 (S k) r'
/\ erasure σ (m2 ∪ mf) (Some r' · rf) s' w2 @ S k) _.
Next Obligation.
intros n1 n2 r1 r2 HLe [rd HR] HP; intros.
destruct (HP w1 (Some rd · rf) s mf σ k) as [w2 [r1' [s' [HW [HP' HE'] ] ] ] ];
try assumption; [now eauto with arith | |].
- eapply erasure_equiv, HE; try reflexivity.
rewrite assoc, (comm (Some r1)), HR; reflexivity.
- rewrite assoc, (comm (Some r1')) in HE'.
destruct (Some rd · Some r1') as [r2' |] eqn: HR';
[| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
exists w2 r2' s'; split; [assumption | split; [| assumption] ].
eapply uni_pred, HP'; [| exists rd; rewrite HR']; reflexivity.
Qed.
Program Definition pvs (m1 m2 : mask) : Props -n> Props :=
n[(fun p => m[(preVS m1 m2 p)])].
Next Obligation.
intros w1 w2 EQw n r; split; intros HP w2'; intros.
- eapply HP; try eassumption; [].
rewrite EQw; assumption.
- eapply HP; try eassumption; [].
rewrite <- EQw; assumption.
Qed.
Next Obligation.
intros w1 w2 EQw n' r HLt; destruct n as [| n]; [now inversion HLt |]; split; intros HP w2'; intros.
- symmetry in EQw; assert (HDE := extend_dist _ _ _ _ EQw HSub).
assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w1)).
edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ].
+ eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith].
+ symmetry in HDE; assert (HDE' := extend_dist _ _ _ _ HDE HW).
assert (HSE' := extend_sub _ _ _ _ HDE HW); destruct HH as [HP HE'];
exists (extend w1'' w2') r' s'; split; [assumption | split].
* eapply (met_morph_nonexp _ _ p), HP ; [symmetry; eassumption | now eauto with arith].
* eapply erasure_dist, HE'; [symmetry; eassumption | now eauto with arith].
- assert (HDE := extend_dist _ _ _ _ EQw HSub); assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w2)).
edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ].
+ eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith].
+ symmetry in HDE; assert (HDE' := extend_dist _ _ _ _ HDE HW).
assert (HSE' := extend_sub _ _ _ _ HDE HW); destruct HH as [HP HE'];
exists (extend w1'' w2') r' s'; split; [assumption | split].
* eapply (met_morph_nonexp _ _ p), HP ; [symmetry; eassumption | now eauto with arith].
* eapply erasure_dist, HE'; [symmetry; eassumption | now eauto with arith].
Qed.
Next Obligation.
intros w1 w2 EQw n r HP w2'; intros; eapply HP; try eassumption; [].
etransitivity; eassumption.
Qed.
Next Obligation.
intros p1 p2 EQp w n r; split; intros HP w1; intros.
- setoid_rewrite <- EQp; eapply HP; eassumption.
- setoid_rewrite EQp; eapply HP; eassumption.
Qed.
Next Obligation.
intros p1 p2 EQp w n' r HLt; split; intros HP w1; intros.
- edestruct HP as [w2 [r' [s' [HW [HP' HE'] ] ] ] ]; try eassumption; [].
clear HP; repeat (eexists; try eassumption); [].
apply EQp; [now eauto with arith | assumption].
- edestruct HP as [w2 [r' [s' [HW [HP' HE'] ] ] ] ]; try eassumption; [].
clear HP; repeat (eexists; try eassumption); [].
apply EQp; [now eauto with arith | assumption].
Qed.
Definition vs (m1 m2 : mask) (p q : Props) : Props :=
□ (p → pvs m1 m2 q).
End ViewShifts.
Section ViewShiftProps.
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Implicit Types (p q r : Props) (i : nat) (m : mask).
Definition mask_sing i := mask_set mask_emp i True.
Lemma vsTimeless m p :
timeless p ⊑ vs m m (▹ p) p.
Proof.
intros w' n r1 HTL w HSub; rewrite HSub in HTL; clear w' HSub.
intros np rp HLe HS Hp w1; intros.
exists w1 rp s; split; [reflexivity | split; [| assumption] ]; clear HE HD.
destruct np as [| np]; [now inversion HLe0 |]; simpl in Hp.
unfold lt in HLe0; rewrite HLe0.
rewrite <- HSub; apply HTL, Hp; [reflexivity | assumption].
Qed.
(* TODO: Why do we even need the nonzero lemma about erase_state here? *)
Lemma vsOpen i p :
valid (vs (mask_sing i) mask_emp (inv i p) (▹ p)).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ HInv w'; clear nn; intros.
do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
apply ı in HInv; rewrite (isoR p) in HInv.
(* get rid of the invisible 1/2 *)
do 8 red in HInv.
destruct HE as [HES [rs [HE HM] ] ].
destruct (rs i) as [ri |] eqn: HLr.
- rewrite erase_remove with (i := i) (r := ri) in HE by assumption.
assert (HR : Some r · rf · s == Some r · Some ri · rf · erase (fdRemove i rs))
by (rewrite <- HE, assoc, <- (assoc (Some r)), (comm rf), assoc; reflexivity).
apply ores_equiv_eq in HR; setoid_rewrite HR in HES; clear HR.
destruct (Some r · Some ri) as [rri |] eqn: HR;
[| erewrite !pcm_op_zero in HES by apply _; now contradiction].
exists w' rri (erase (fdRemove i rs)); split; [reflexivity |].
split; [| split; [assumption |] ].
+ simpl; eapply HInv; [now auto with arith |].
eapply uni_pred, HM with i;
[| exists r; rewrite <- HR | | | rewrite HLr]; try reflexivity; [|].
* left; unfold mask_sing, mask_set.
destruct (Peano_dec.eq_nat_dec i i); tauto.
* specialize (HSub i); rewrite HLu in HSub.
symmetry; destruct (w' i); [assumption | contradiction].
+ exists (fdRemove i rs); split; [reflexivity | intros j Hm].
destruct Hm as [| Hm]; [contradiction |]; specialize (HD j); simpl in HD.
unfold mask_sing, mask_set in HD; destruct (Peano_dec.eq_nat_dec i j);
[subst j; contradiction HD; tauto | clear HD].
rewrite fdLookup_in; setoid_rewrite (fdRemove_neq _ _ _ n0); rewrite <- fdLookup_in; now auto.
- rewrite <- fdLookup_notin_strong in HLr; contradiction HLr; clear HLr.
specialize (HSub i); rewrite HLu in HSub; clear - HM HSub.
destruct (HM i) as [HD _]; [left | rewrite HD, fdLookup_in_strong; destruct (w' i); [eexists; reflexivity | contradiction] ].
clear; unfold mask_sing, mask_set.
destruct (Peano_dec.eq_nat_dec i i); tauto.
Qed.
Lemma vsClose i p :
valid (vs mask_emp (mask_sing i) (inv i p * ▹ p) ⊤).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ [r1 [r2 [HR [HInv HP] ] ] ] w'; clear nn; intros.
do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
apply ı in HInv; rewrite (isoR p) in HInv.
(* get rid of the invisible 1/2 *)
do 8 red in HInv.
destruct HE as [HES [rs [HE HM] ] ].
exists w' (pcm_unit _) (Some r · s); split; [reflexivity | split; [exact I |] ].
assert (HR' : Some r · rf · s = rf · (Some r · s))
by (eapply ores_equiv_eq; rewrite assoc, (comm rf); reflexivity).
setoid_rewrite HR' in HES; erewrite pcm_op_unit by apply _.
split; [assumption |].
remember (match rs i with Some ri => ri | None => pcm_unit _ end) as ri eqn: EQri.
destruct (Some ri · Some r) as [rri |] eqn: EQR.
- exists (fdUpdate i rri rs); split; [| intros j Hm].
+ symmetry; rewrite <- HE; clear - EQR EQri; destruct (rs i) as [rsi |] eqn: EQrsi; subst;
[eapply erase_insert_old; [eassumption | rewrite <- EQR; reflexivity] |].
erewrite pcm_op_unit in EQR by apply _; rewrite EQR.
now apply erase_insert_new.
+ specialize (HD j); unfold mask_sing, mask_set in *; simpl in Hm, HD.
destruct (Peano_dec.eq_nat_dec i j);
[subst j; clear Hm |
destruct Hm as [Hm | Hm]; [contradiction | rewrite fdLookup_in_strong, fdUpdate_neq, <- fdLookup_in_strong by assumption; now auto] ].
rewrite !fdLookup_in_strong, fdUpdate_eq.
destruct n as [| n]; [now inversion HLe | simpl in HP].
rewrite HSub in HP; specialize (HSub i); rewrite HLu in HSub.
destruct (w' i) as [π' |]; [| contradiction].
split; [intuition now eauto | intros].
simpl in HLw, HLrs, HSub; subst ri0; rewrite <- HLw, <- HSub.
apply HInv; [now auto with arith |].
eapply uni_pred, HP; [now auto with arith |].
assert (HT : Some ri · Some r1 · Some r2 == Some rri)
by (rewrite <- EQR, <- HR, assoc; reflexivity); clear - HT.
destruct (Some ri · Some r1) as [rd |];
[| now erewrite pcm_op_zero in HT by apply _].
exists rd; assumption.
- destruct (rs i) as [rsi |] eqn: EQrsi; subst;
[| erewrite pcm_op_unit in EQR by apply _; discriminate].
clear - HE HES EQrsi EQR.
assert (HH : rf · (Some r · s) = 0); [clear HES | rewrite HH in HES; contradiction].
eapply ores_equiv_eq; rewrite <- HE, erase_remove by eassumption.
rewrite (assoc (Some r)), (comm (Some r)), EQR, comm.
erewrite !pcm_op_zero by apply _; reflexivity.
Qed.
Lemma vsTrans p q r m1 m2 m3 (HMS : m2 ⊆ m1 ∪ m3) :
vs m1 m2 p q ∧ vs m2 m3 q r ⊑ vs m1 m3 p r.
Proof.
intros w' n r1 [Hpq Hqr] w HSub; specialize (Hpq _ HSub); rewrite HSub in Hqr; clear w' HSub.
intros np rp HLe HS Hp w1; intros; specialize (Hpq _ _ HLe HS Hp).
edestruct Hpq as [w2 [rq [sq [HSw12 [Hq HEq] ] ] ] ]; try eassumption; [|].
{ (* XXX: possible lemma *)
clear - HD HMS.
intros j [Hmf Hm12]; apply (HD j); split; [assumption |].
destruct Hm12 as [Hm1 | Hm2]; [left; assumption | apply HMS, Hm2].
}
clear HS; assert (HS : pcm_unit _ ⊑ rq) by (exists rq; now erewrite comm, pcm_op_unit by apply _).
rewrite <- HLe, HSub in Hqr; specialize (Hqr _ HSw12); clear Hpq HE w HSub Hp.
edestruct (Hqr (S k) _ HLe0 HS Hq w2) as [w3 [rR [sR [HSw23 [Hr HEr] ] ] ] ];
try (reflexivity || eassumption); [now auto with arith | |].
{ (* XXX: possible lemma *)
clear - HD HMS.
intros j [Hmf Hm23]; apply (HD j); split; [assumption |].
destruct Hm23 as [Hm2 | Hm3]; [apply HMS, Hm2 | right; assumption].
}
clear HEq Hq HS.
setoid_rewrite HSw12; eauto 8.
Qed.
Lemma vsEnt p q m :
□ (p → q) ⊑ vs m m p q.
Proof.
intros w' n r1 Himp w HSub; rewrite HSub in Himp; clear w' HSub.
intros np rp HLe HS Hp w1; intros.
exists w1 rp s; split; [reflexivity | split; [| assumption ] ].
eapply Himp; [assumption | now eauto with arith | exists rp; now erewrite comm, pcm_op_unit by apply _ |].
unfold lt in HLe0; rewrite HLe0, <- HSub; assumption.
Qed.
Lemma vsFrame p q r m1 m2 mf (HDisj : mf # m1 ∪ m2) :
vs m1 m2 p q ⊑ vs (m1 ∪ mf) (m2 ∪ mf) (p * r) (q * r).
Proof.
intros w' n r1 HVS w HSub; specialize (HVS _ HSub); clear w' r1 HSub.
intros np rpr HLe _ [rp [rr [HR [Hp Hr] ] ] ] w'; intros.
assert (HS : pcm_unit _ ⊑ rp) by (exists rp; now erewrite comm, pcm_op_unit by apply _).
specialize (HVS _ _ HLe HS Hp w' (Some rr · rf) s (mf ∪ mf0) σ k); clear HS.
destruct HVS as [w'' [rq [s' [HSub' [Hq HEq] ] ] ] ]; try assumption; [| |].
- (* disjointness of masks: possible lemma *)
clear - HD HDisj; intros i [ [Hmf | Hmf] Hm12]; [eapply HDisj; now eauto |].
eapply HD; split; [eassumption | tauto].
- rewrite assoc, HR; eapply erasure_equiv, HE; try reflexivity; [].
clear; intros i; tauto.
- rewrite assoc in HEq; destruct (Some rq · Some rr) as [rqr |] eqn: HR';
[| apply erasure_not_empty in HEq; [contradiction | now erewrite !pcm_op_zero by apply _] ].
exists w'' rqr s'; split; [assumption | split].
+ unfold lt in HLe0; rewrite HSub, HSub', <- HLe0 in Hr; exists rq rr.
rewrite HR'; split; now auto.
+ eapply erasure_equiv, HEq; try reflexivity; [].
clear; intros i; tauto.
Qed.
(* XXX: extra lemma *)
Lemma valid_iff p :
valid p <-> (⊤ ⊑ p).
Proof.
split; intros Hp.
- intros w n r _; apply Hp.
- intros w n r; apply Hp; exact I.
Qed.
Lemma vsFalse m1 m2 : (* TODO move to derived rules *)
valid (vs m1 m2 ⊥ ⊥).
Proof.
rewrite valid_iff, box_top.
unfold vs; apply box_intro.
rewrite <- and_impl, and_projR.
apply bot_false.
Qed.
Instance LP_optres (P : option RL.res -> Prop) : LimitPreserving P.
Proof.
intros σ σc HPc; simpl; unfold option_compl.
generalize (@eq_refl _ (σ 1%nat)).
pattern (σ 1%nat) at 1 3; destruct (σ 1%nat); [| intros HE; rewrite HE; apply HPc].
intros HE; simpl; unfold discreteCompl, unSome.
generalize (@eq_refl _ (σ 2)); pattern (σ 2) at 1 3; destruct (σ 2).
+ intros HE'; rewrite HE'; apply HPc.
+ intros HE'; exfalso; specialize (σc 1 1 2)%nat.
rewrite <- HE, <- HE' in σc; contradiction σc; auto with arith.
Qed.
Definition ownLP (P : option RL.res -> Prop) : {s : option RL.res | P s} -n> Props :=
ownL
Some rp1 · Some rp2 == Some rp /\ Some sp1 · Some sp2 == Some sp.
Proof.
unfold pcm_op at 1, res_op at 2, pcm_op_prod at 1.
destruct (Some rp1 · Some rp2) as [rp' |]; [| simpl; tauto].
destruct (Some sp1 · Some sp2) as [sp' |]; [| simpl; tauto].
simpl; split; [| intros [EQ1 EQ2]; subst; reflexivity].
intros EQ; inversion EQ; tauto.
Qed.
Lemma vsGhostUpd m rl (P : option RL.res -> Prop)
(HU : forall rf (HD : rl · rf <> None), exists sl, P sl /\ sl · rf <> None) :
valid (vs m m (ownL rl) (xist (ownLP P))).
Proof.
unfold ownLP; intros _ _ _ w _ n [rp' rl'] _ _ HG w'; intros.
destruct rl as [rl |]; simpl in HG; [| contradiction].
destruct HG as [ [rdp rdl] EQr]; rewrite pcm_op_split in EQr; destruct EQr as [EQrp EQrl].
erewrite comm, pcm_op_unit in EQrp by apply _; simpl in EQrp; subst rp'.
destruct (Some (rdp, rl') · rf · s) as [t |] eqn: EQt;
[| destruct HE as [HES _]; setoid_rewrite EQt in HES; contradiction].
assert (EQt' : Some (rdp, rl') · rf · s == Some t) by (rewrite EQt; reflexivity).
clear EQt; rename EQt' into EQt.
destruct rf as [ [rfp rfl] |]; [| now erewrite (comm _ 0), !pcm_op_zero in EQt by apply _].
destruct s as [ [sp sl] |]; [| now erewrite (comm _ 0), pcm_op_zero in EQt by apply _].
destruct (Some (rdp, rl') · Some (rfp, rfl)) as [ [rdfp rdfl] |] eqn: EQdf;
setoid_rewrite EQdf in EQt; [| now erewrite pcm_op_zero in EQt by apply _].
destruct (HU (Some rdl · Some rfl · Some sl)) as [rsl [HPrsl HCrsl] ].
- intros HEq; destruct t as [tp tl]; apply pcm_op_split in EQt; destruct EQt as [_ EQt].
assert (HT : Some (rdp, rl') · Some (rfp, rfl) == Some (rdfp, rdfl)) by (rewrite EQdf; reflexivity); clear EQdf.
apply pcm_op_split in HT; destruct HT as [_ EQdf].
now rewrite <- EQdf, <- EQrl, (comm (Some rdl)), <- (assoc (Some rl)), <- assoc, HEq in EQt.
- destruct (rsl · Some rdl) as [rsl' |] eqn: EQrsl;
[| contradiction HCrsl; eapply ores_equiv_eq; now erewrite !assoc, EQrsl, !pcm_op_zero by apply _ ].
exists w' (rdp, rsl') (Some (sp, sl)); split; [reflexivity | split].
+ exists (exist _ rsl HPrsl); destruct rsl as [rsl |];
[simpl | now erewrite pcm_op_zero in EQrsl by apply _].
exists (rdp, rdl); rewrite pcm_op_split.
split; [now erewrite comm, pcm_op_unit by apply _ | now rewrite comm, EQrsl].
+ destruct HE as [HES HEL]; split; [| assumption]; clear HEL.
assert (HT := ores_equiv_eq _ _ _ EQt); setoid_rewrite EQdf in HES;
setoid_rewrite HT in HES; clear HT; destruct t as [tp tl].
destruct (rsl · (Some rdl · Some rfl · Some sl)) as [tl' |] eqn: EQtl;
[| now contradiction HCrsl]; clear HCrsl.
assert (HT : Some (rdp, rsl') · Some (rfp, rfl) · Some (sp, sl) = Some (tp, tl')); [| setoid_rewrite HT; apply HES].
rewrite <- EQdf, <- assoc in EQt; clear EQdf; eapply ores_equiv_eq; rewrite <- assoc.
destruct (Some (rfp, rfl) · Some (sp, sl)) as [ [up ul] |] eqn: EQu;
setoid_rewrite EQu in EQt; [| now erewrite comm, pcm_op_zero in EQt by apply _].
apply pcm_op_split in EQt; destruct EQt as [EQt _]; apply pcm_op_split; split; [assumption |].
assert (HT : Some rfl · Some sl == Some ul);
[| now rewrite <- EQrsl, <- EQtl, <- HT, !assoc].
apply (proj2 (A := Some rfp · Some sp == Some up)), pcm_op_split.
now erewrite EQu.
Qed.
(* The above proof is rather ugly in the way it handles the monoid elements,
but it works *)
Global Instance nat_type : Setoid nat := discreteType.
Global Instance nat_metr : metric nat := discreteMetric.
Global Instance nat_cmetr : cmetric nat := discreteCMetric.
Program Definition inv' m : Props -n> {n : nat | m n} -n> Props :=
n[(fun p => n[(fun n => inv n p)])].
Next Obligation.
intros i i' EQi; simpl in EQi; rewrite EQi; reflexivity.
Qed.
Next Obligation.
intros i i' EQi; destruct n as [| n]; [apply dist_bound |].
simpl in EQi; rewrite EQi; reflexivity.
Qed.
Next Obligation.
intros p1 p2 EQp i; simpl morph.
apply (morph_resp (inv (` i))); assumption.
Qed.
Next Obligation.
intros p1 p2 EQp i; simpl morph.
apply (inv (` i)); assumption.
Qed.
Lemma fresh_region (w : Wld) m (HInf : mask_infinite m) :
exists i, m i /\ w i = None.
Proof.
destruct (HInf (S (List.last (dom w) 0%nat))) as [i [HGe Hm] ];
exists i; split; [assumption |]; clear - HGe.
rewrite <- fdLookup_notin_strong.
destruct w as [ [| [n v] w] wP]; unfold dom in *; simpl findom_t in *; [tauto |].
simpl List.map in *; rewrite last_cons in HGe.
unfold ge in HGe; intros HIn; eapply Gt.gt_not_le, HGe.
apply Le.le_n_S, SS_last_le; assumption.
Qed.
Instance LP_mask m : LimitPreserving m.
Proof.
intros σ σc Hp; apply Hp.
Qed.
Lemma vsNewInv p m (HInf : mask_infinite m) :
valid (vs m m (▹ p) (xist (inv' m p))).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ HP w'; clear nn; intros.
destruct n as [| n]; [now inversion HLe | simpl in HP].
rewrite HSub in HP; clear w HSub; rename w' into w.
destruct (fresh_region w m HInf) as [i [Hm HLi] ].
assert (HSub : w ⊑ fdUpdate i (ı' p) w).
{ intros j; destruct (Peano_dec.eq_nat_dec i j); [subst j; rewrite HLi; exact I|].
now rewrite fdUpdate_neq by assumption.
}
exists (fdUpdate i (ı' p) w) (pcm_unit _) (Some r · s); split; [assumption | split].
- exists (exist _ i Hm); do 16 red.
unfold proj1_sig; rewrite fdUpdate_eq; reflexivity.
- erewrite pcm_op_unit by apply _.
assert (HR : rf · (Some r · s) = Some r · rf · s)
by (eapply ores_equiv_eq; rewrite assoc, (comm rf); reflexivity).
destruct HE as [HES [rs [HE HM] ] ].
split; [setoid_rewrite HR; assumption | clear HR].
assert (HRi : rs i = None).
{ destruct (HM i) as [HDom _]; [tauto |].
rewrite <- fdLookup_notin_strong, HDom, fdLookup_notin_strong; assumption.
}
exists (fdUpdate i r rs); split; [now rewrite <- erase_insert_new, HE by assumption | intros j Hm'].
rewrite !fdLookup_in_strong; destruct (Peano_dec.eq_nat_dec i j).
+ subst j; rewrite !fdUpdate_eq; split; [intuition now eauto | intros].
simpl in HLw, HLrs; subst ri; rewrite <- HLw, isoR, <- HSub.
eapply uni_pred, HP; [now auto with arith | reflexivity].
+ rewrite !fdUpdate_neq, <- !fdLookup_in_strong by assumption.
setoid_rewrite <- HSub.
apply HM; assumption.
Qed.
End ViewShiftProps.
Section HoareTriples.
(* Quadruples, really *)
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Local Open Scope lang_scope.
Global Instance expr_type : Setoid expr := discreteType.
Global Instance expr_metr : metric expr := discreteMetric.
Global Instance expr_cmetr : cmetric expr := discreteCMetric.
Instance LP_isval : LimitPreserving is_value.
Proof.
intros σ σc HC; apply HC.
Qed.
Implicit Types (P Q R : Props) (i : nat) (m : mask) (e : expr) (w : Wld) (φ : value -n> Props) (r : res).
Local Obligation Tactic := intros; eauto with typeclass_instances.
Definition wpFP m (WP : expr -n> (value -n> Props) -n> Props) e φ w n r :=
forall w' k s rf σ (HSw : w ⊑ w') (HLt : k < n)
(HE : erasure σ m (Some r · rf) s w' @ S k),
(forall (HV : is_value e),
exists w'' r' s', w' ⊑ w'' /\ φ (exist _ e HV) w'' (S k) r'
/\ erasure σ m (Some r' · rf) s' w'' @ S k) /\
(forall σ' ei ei' K (HDec : e = K [[ ei ]])
(HStep : prim_step (ei, σ) (ei', σ')),
exists w'' r' s', w' ⊑ w'' /\ WP (K [[ ei' ]]) φ w'' k r'
/\ erasure σ' m (Some r' · rf) s' w'' @ k) /\
(forall e' K (HDec : e = K [[ fork e' ]]),
exists w'' rfk rret s', w' ⊑ w''
/\ WP (K [[ fork_ret ]]) φ w'' k rret
/\ WP e' (umconst ⊤) w'' k rfk
/\ erasure σ m (Some rfk · Some rret · rf) s' w'' @ k).
Program Definition wpF m : (expr -n> (value -n> Props) -n> Props) -n> expr -n> (value -n> Props) -n> Props :=
n[(fun WP => n[(fun e => n[(fun φ => m[(fun w => mkUPred (wpFP m WP e φ w) _)])])])].
Next Obligation.
intros n1 n2 r1 r2 HLe [rd EQr] Hp w' k s rf σ HSw HLt HE.
rewrite <- EQr, (comm (Some rd)), <- assoc in HE.
specialize (Hp w' k s (Some rd · rf) σ); destruct Hp as [HV [HS HF] ];
[| now eauto with arith | ..]; try assumption; [].
split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
- specialize (HV HV0); destruct HV as [w'' [r1' [s' [HSw' [Hφ HE'] ] ] ] ].
rewrite assoc, (comm (Some r1')) in HE'.
destruct (Some rd · Some r1') as [r2' |] eqn: HR;
[| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
exists w'' r2' s'; split; [assumption | split; [| assumption] ].
eapply uni_pred, Hφ; [| eexists; rewrite <- HR]; reflexivity.
- specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r1' [s' [HSw' [HWP HE'] ] ] ] ].
rewrite assoc, (comm (Some r1')) in HE'.
destruct k as [| k]; [exists w'' r1' s'; simpl erasure; tauto |].
destruct (Some rd · Some r1') as [r2' |] eqn: HR;
[| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
exists w'' r2' s'; split; [assumption | split; [| assumption] ].
eapply uni_pred, HWP; [| eexists; rewrite <- HR]; reflexivity.
- specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret1 [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
destruct k as [| k]; [exists w'' rfk rret1 s'; simpl erasure; tauto |].
rewrite assoc, <- (assoc (Some rfk)), (comm (Some rret1)) in HE'.
destruct (Some rd · Some rret1) as [rret2 |] eqn: HR;
[| apply erasure_not_empty in HE'; [contradiction | now erewrite (comm _ 0), !pcm_op_zero by apply _] ].
exists w'' rfk rret2 s'; repeat (split; try assumption); [].
eapply uni_pred, HWR; [| eexists; rewrite <- HR]; reflexivity.
Qed.
Next Obligation.
intros w1 w2 EQw n r; simpl.
split; intros Hp w'; intros; eapply Hp; try eassumption.
- rewrite EQw; assumption.
- rewrite <- EQw; assumption.
Qed.
Next Obligation.
intros w1 w2 EQw n' r HLt; simpl; destruct n as [| n]; [now inversion HLt |]; split; intros Hp w2'; intros.
- symmetry in EQw; assert (EQw' := extend_dist _ _ _ _ EQw HSw); assert (HSw' := extend_sub _ _ _ _ EQw HSw); symmetry in EQw'.
edestruct (Hp (extend w2' w1)) as [HV [HS HF] ]; try eassumption;
[eapply erasure_dist, HE; [eassumption | now eauto with arith] |].
split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
+ specialize (HV HV0); destruct HV as [w1'' [r' [s' [HSw'' [Hφ HE'] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') r' s'; split; [assumption |].
split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
eapply (met_morph_nonexp _ _ (φ _)), Hφ; [eassumption | now eauto with arith].
+ specialize (HS _ _ _ _ HDec HStep); destruct HS as [w1'' [r' [s' [HSw'' [HWP HE'] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') r' s'; split; [assumption |].
split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
eapply (met_morph_nonexp _ _ (WP _ _)), HWP; [eassumption | now eauto with arith].
+ specialize (HF _ _ HDec); destruct HF as [w1'' [rfk [rret [s' [HSw'' [HWR [HWF HE'] ] ] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') rfk rret s'; split; [assumption |].
split; [| split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ] ];
eapply (met_morph_nonexp _ _ (WP _ _)); try eassumption; now eauto with arith.
- assert (EQw' := extend_dist _ _ _ _ EQw HSw); assert (HSw' := extend_sub _ _ _ _ EQw HSw); symmetry in EQw'.
edestruct (Hp (extend w2' w2)) as [HV [HS HF] ]; try eassumption;
[eapply erasure_dist, HE; [eassumption | now eauto with arith] |].
split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
+ specialize (HV HV0); destruct HV as [w1'' [r' [s' [HSw'' [Hφ HE'] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') r' s'; split; [assumption |].
split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
eapply (met_morph_nonexp _ _ (φ _)), Hφ; [eassumption | now eauto with arith].
+ specialize (HS _ _ _ _ HDec HStep); destruct HS as [w1'' [r' [s' [HSw'' [HWP HE'] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') r' s'; split; [assumption |].
split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
eapply (met_morph_nonexp _ _ (WP _ _)), HWP; [eassumption | now eauto with arith].
+ specialize (HF _ _ HDec); destruct HF as [w1'' [rfk [rret [s' [HSw'' [HWR [HWF HE'] ] ] ] ] ] ].
assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
exists (extend w1'' w2') rfk rret s'; split; [assumption |].
split; [| split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ] ];
eapply (met_morph_nonexp _ _ (WP _ _)); try eassumption; now eauto with arith.
Qed.
Next Obligation.
intros w1 w2 Sw n r; simpl; intros Hp w'; intros; eapply Hp; try eassumption.
etransitivity; eassumption.
Qed.
Next Obligation.
intros φ1 φ2 EQφ w n r; simpl.
unfold wpFP; setoid_rewrite EQφ; reflexivity.
Qed.
Next Obligation.
intros φ1 φ2 EQφ w k r HLt; simpl; destruct n as [| n]; [now inversion HLt |].
split; intros Hp w'; intros; edestruct Hp as [HV [HS HF] ]; try eassumption; [|].
- split; [| split]; intros.
+ clear HS HF; specialize (HV HV0); destruct HV as [w'' [r' [s' [HSw' [Hφ HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
apply EQφ, Hφ; now eauto with arith.
+ clear HV HF; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [Hφ HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply (met_morph_nonexp _ _ (WP _)), Hφ; [symmetry; eassumption | now eauto with arith].
+ clear HV HS; specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; repeat (split; try assumption); [].
eapply (met_morph_nonexp _ _ (WP _)), HWR; [symmetry; eassumption | now eauto with arith].
- split; [| split]; intros.
+ clear HS HF; specialize (HV HV0); destruct HV as [w'' [r' [s' [HSw' [Hφ HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
apply EQφ, Hφ; now eauto with arith.
+ clear HV HF; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [Hφ HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply (met_morph_nonexp _ _ (WP _)), Hφ; [eassumption | now eauto with arith].
+ clear HV HS; specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; repeat (split; try assumption); [].
eapply (met_morph_nonexp _ _ (WP _)), HWR; [eassumption | now eauto with arith].
Qed.
Next Obligation.
intros e1 e2 EQe φ w n r; simpl.
simpl in EQe; subst e2; reflexivity.
Qed.
Next Obligation.
intros e1 e2 EQe φ w k r HLt; destruct n as [| n]; [now inversion HLt | simpl].
simpl in EQe; subst e2; reflexivity.
Qed.
Next Obligation.
intros WP1 WP2 EQWP e φ w n r; simpl.
unfold wpFP; setoid_rewrite EQWP; reflexivity.
Qed.
Next Obligation.
intros WP1 WP2 EQWP e φ w k r HLt; destruct n as [| n]; [now inversion HLt | simpl].
split; intros Hp w'; intros; edestruct Hp as [HF [HS HV] ]; try eassumption; [|].
- split; [assumption | split; intros].
+ clear HF HV; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [HWP HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply (EQWP _ _ _), HWP; now eauto with arith.
+ clear HF HS; specialize (HV _ _ HDec); destruct HV as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; split; [assumption |].
split; [| split; [| assumption] ]; eapply EQWP; try eassumption; now eauto with arith.
- split; [assumption | split; intros].
+ clear HF HV; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [HWP HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply (EQWP _ _ _), HWP; now eauto with arith.
+ clear HF HS; specialize (HV _ _ HDec); destruct HV as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; split; [assumption |].
split; [| split; [| assumption] ]; eapply EQWP; try eassumption; now eauto with arith.
Qed.
Instance contr_wpF m : contractive (wpF m).
Proof.
intros n WP1 WP2 EQWP e φ w k r HLt.
split; intros Hp w'; intros; edestruct Hp as [HV [HS HF] ]; try eassumption; [|].
- split; [assumption | split; intros].
+ clear HF HV; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [HWP HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply EQWP, HWP; now eauto with arith.
+ clear HV HS; specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; split; [assumption |].
split; [| split; [| assumption] ]; eapply EQWP; try eassumption; now eauto with arith.
- split; [assumption | split; intros].
+ clear HF HV; specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r' [s' [HSw' [HWP HE'] ] ] ] ].
exists w'' r' s'; split; [assumption | split; [| assumption] ].
eapply EQWP, HWP; now eauto with arith.
+ clear HV HS; specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
exists w'' rfk rret s'; split; [assumption |].
split; [| split; [| assumption] ]; eapply EQWP; try eassumption; now eauto with arith.
Qed.
Definition wp m : expr -n> (value -n> Props) -n> Props :=
fixp (wpF m) (umconst (umconst ⊤)).
Definition ht m P e φ := □ (P → wp m e φ).
End HoareTriples.
Section Soundness.
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Local Open Scope lang_scope.
Local Open Scope list_scope.
Inductive stepn : nat -> cfg -> cfg -> Prop :=
| stepn_O ρ : stepn O ρ ρ
| stepn_S ρ1 ρ2 ρ3 n
(HS : step ρ1 ρ2)
(HSN : stepn n ρ2 ρ3) :
stepn (S n) ρ1 ρ3.
Inductive wptp (m : mask) (w : Wld) (n : nat) : tpool -> list res -> Prop :=
| wp_emp : wptp m w n nil nil
| wp_cons e r tp rs
(WPE : wp m e (umconst ⊤) w n r)
(WPTP : wptp m w n tp rs) :
wptp m w n (e :: tp) (r :: rs).
(* Trivial lemma about application split *)
Lemma wptp_app m w n tp1 tp2 rs1 rs2
(HW1 : wptp m w n tp1 rs1)
(HW2 : wptp m w n tp2 rs2) :
wptp m w n (tp1 ++ tp2) (rs1 ++ rs2).
Proof.
induction HW1; [| constructor]; now trivial.
Qed.
(* Closure under future worlds and smaller steps *)
Lemma wptp_closure m (w1 w2 : Wld) n1 n2 tp rs
(HSW : w1 ⊑ w2) (HLe : n2 <= n1)
(HW : wptp m w1 n1 tp rs) :
wptp m w2 n2 tp rs.
Proof.
induction HW; constructor; [| assumption].
eapply uni_pred; [eassumption | reflexivity |].
rewrite <- HSW; assumption.
Qed.
Lemma wptp_app_tp m w n t1 t2 rs
(HW : wptp m w n (t1 ++ t2) rs) :
exists rs1 rs2, rs1 ++ rs2 = rs /\ wptp m w n t1 rs1 /\ wptp m w n t2 rs2.
Proof.
revert rs HW; induction t1; intros; inversion HW; simpl in *; subst; clear HW.
- exists (@nil res) (@nil res); now auto using wptp.
- exists (@nil res); simpl; now eauto using wptp.
- apply IHt1 in WPTP; destruct WPTP as [rs1 [rs2 [EQrs [WP1 WP2] ] ] ]; clear IHt1.
exists (r :: rs1) rs2; simpl; subst; now auto using wptp.
Qed.
Lemma comp_list_app rs1 rs2 :
comp_list (rs1 ++ rs2) == comp_list rs1 · comp_list rs2.
Proof.
induction rs1; simpl comp_list; [now rewrite pcm_op_unit by apply _ |].
now rewrite IHrs1, assoc.
Qed.
Definition wf_nat_ind := well_founded_induction Wf_nat.lt_wf.
Lemma unfold_wp m :
wp m == (wpF m) (wp m).
Proof.
unfold wp; apply fixp_eq.
Qed.
Lemma sound_tp m n k e e' tp tp' σ σ' φ w r rs s
(HSN : stepn n (e :: tp, σ) (e' :: tp', σ'))
(HV : is_value e')
(HWE : wp m e φ w (n + S k) r)
(HWTP : wptp m w (n + S k) tp rs)
(HE : erasure σ m (Some r · comp_list rs) s w @ n + S k) :
exists w' r' s',
w ⊑ w' /\ φ (exist _ e' HV) w' (S k) r' /\ erasure σ' m (Some r') s' w' @ S k.
Proof.
revert e tp σ w r rs s HSN HWE HWTP HE; induction n using wf_nat_ind; rename H into HInd.
intros; inversion HSN; subst; clear HSN.
(* e is a value *)
{ rename e' into e; clear HInd HWTP; simpl plus in *; rewrite unfold_wp in HWE.
edestruct (HWE w k) as [HVal _]; [reflexivity | unfold lt; reflexivity | eassumption |].
specialize (HVal HV); destruct HVal as [w' [r' [s' [HSW [Hφ HE'] ] ] ] ].
destruct (Some r' · comp_list rs) as [r'' |] eqn: EQr.
- exists w' r'' s'; split; [assumption | split; [| assumption] ].
eapply uni_pred, Hφ; [reflexivity |].
rewrite ord_res_optRes; exists (comp_list rs); rewrite comm, EQr; reflexivity.
- exfalso; eapply erasure_not_empty, HE'.
now erewrite pcm_op_zero by apply _.
}
rename n0 into n; specialize (HInd n (le_n _)); inversion HS; subst; clear HS.
(* atomic step *)
{ destruct t1 as [| ee t1]; inversion H0; subst; clear H0.
(* step in e *)
- simpl in HSN0; rewrite unfold_wp in HWE; edestruct (HWE w (n + S k)) as [_ [HS _] ];
[reflexivity | apply le_n | eassumption |].
edestruct HS as [w' [r' [s' [HSW [HWE' HE'] ] ] ] ]; [reflexivity | eassumption | clear HS HWE HE].
setoid_rewrite HSW; eapply HInd; try eassumption.
eapply wptp_closure, HWTP; [assumption | now auto with arith].
(* step in a spawned thread *)
- apply wptp_app_tp in HWTP; destruct HWTP as [rs1 [rs2 [EQrs [HWTP1 HWTP2] ] ] ].
inversion HWTP2; subst; clear HWTP2; rewrite unfold_wp in WPE.
edestruct (WPE w (n + S k) s (Some r · comp_list (rs1 ++ rs0))) as [_ [HS _] ];
[reflexivity | apply le_n | eapply erasure_equiv, HE; try reflexivity; [] |].
+ rewrite !comp_list_app; simpl comp_list; unfold equiv.
rewrite assoc, (comm (Some r0)), <- assoc; apply pcm_op_equiv; [reflexivity |].
now rewrite assoc, (comm (Some r0)), <- assoc.
+ edestruct HS as [w' [r0' [s' [HSW [WPE' HE'] ] ] ] ];
[reflexivity | eassumption | clear WPE HS].
setoid_rewrite HSW; eapply HInd; try eassumption; [| |].
* rewrite <- HSW; eapply uni_pred, HWE; [now auto with arith | reflexivity].
* apply wptp_app; [eapply wptp_closure, HWTP1; [assumption | now auto with arith] |].
constructor; [eassumption | eapply wptp_closure, WPTP; [assumption | now auto with arith] ].
* eapply erasure_equiv, HE'; try reflexivity; [].
rewrite assoc, (comm (Some r0')), <- assoc; apply pcm_op_equiv; [reflexivity |].
rewrite !comp_list_app; simpl comp_list.
now rewrite assoc, (comm (comp_list rs1)), <- assoc.
}
(* fork *)
destruct t1 as [| ee t1]; inversion H; subst; clear H.
(* fork from e *)
- simpl in HSN0; rewrite unfold_wp in HWE; edestruct (HWE w (n + S k)) as [_ [_ HF] ];
[reflexivity | apply le_n | eassumption |].
specialize (HF _ _ eq_refl); destruct HF as [w' [rfk [rret [s' [HSW [HWE' [HWFK HE'] ] ] ] ] ] ].
clear HWE HE; setoid_rewrite HSW; eapply HInd with (rs := rs ++ [rfk]); try eassumption; [|].
+ apply wptp_app; [| now auto using wptp].
eapply wptp_closure, HWTP; [assumption | now auto with arith].
+ eapply erasure_equiv, HE'; try reflexivity; []; unfold equiv; clear.
rewrite (comm (Some rfk)), <- assoc; apply pcm_op_equiv; [reflexivity |].
rewrite comp_list_app; simpl comp_list; rewrite comm.
now erewrite (comm _ 1), pcm_op_unit by apply _.
(* fork from a spawned thread *)
- apply wptp_app_tp in HWTP; destruct HWTP as [rs1 [rs2 [EQrs [HWTP1 HWTP2] ] ] ].
inversion HWTP2; subst; clear HWTP2; rewrite unfold_wp in WPE.
edestruct (WPE w (n + S k) s (Some r · comp_list (rs1 ++ rs0))) as [_ [_ HF] ];
[reflexivity | apply le_n | eapply erasure_equiv, HE; try reflexivity; [] |].
+ rewrite assoc, (comm (Some r0)), <- assoc; apply pcm_op_equiv; [reflexivity |].
rewrite !comp_list_app; simpl comp_list; now rewrite assoc, (comm (Some r0)), <- assoc.
+ specialize (HF _ _ eq_refl); destruct HF as [w' [rfk [rret [s' [HSW [WPE' [WPS HE'] ] ] ] ] ] ]; clear WPE.
setoid_rewrite HSW; eapply HInd; try eassumption; [| |].
* rewrite <- HSW; eapply uni_pred, HWE; [now auto with arith | reflexivity].
* apply wptp_app; [eapply wptp_closure, HWTP1; [assumption | now auto with arith] |].
constructor; [eassumption | apply wptp_app; [| now eauto using wptp] ].
eapply wptp_closure, WPTP; [assumption | now auto with arith].
* eapply erasure_equiv, HE'; try reflexivity; [].
rewrite (assoc _ (Some r)), (comm _ (Some r)), <- assoc.
apply pcm_op_equiv; [reflexivity |].
rewrite (comm (Some rfk)), <- assoc, comp_list_app; simpl comp_list.
rewrite assoc, (comm _ (Some rret)), <- assoc.
apply pcm_op_equiv; [reflexivity |].
rewrite (comm (Some rfk)), !comp_list_app; simpl comp_list.
rewrite assoc; apply pcm_op_equiv; [reflexivity |].
now erewrite comm, pcm_op_unit by apply _.
Qed.
Lemma unit_min r : pcm_unit _ ⊑ r.
Proof.
exists r; now erewrite comm, pcm_op_unit by apply _.
Qed.
(** This is a (relatively) generic soundness statement; one can
simplify it for certain classes of assertions (e.g.,
independent of the worlds) and obtain easy corollaries. *)
Theorem soundness m e p φ n k e' tp σ σ' w r s
(HT : valid (ht m p e φ))
(HSN : stepn n ([e], σ) (e' :: tp, σ'))
(HV : is_value e')
(HP : p w (n + S k) r)
(HE : erasure σ m (Some r) s w @ n + S k) :
exists w' r' s',
w ⊑ w' /\ φ (exist _ e' HV) w' (S k) r' /\ erasure σ' m (Some r') s' w' @ S k.
Proof.
specialize (HT w (n + S k) r).
eapply sound_tp; [eassumption | | constructor | eapply erasure_equiv, HE; try reflexivity; [] ].
- apply HT in HP; try reflexivity; [eassumption | apply unit_min].
- simpl comp_list; now erewrite comm, pcm_op_unit by apply _.
Qed.
End Soundness.
Section HoareTripleProperties.
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Local Open Scope lang_scope.
Existing Instance LP_isval.
Implicit Types (P Q R : Props) (i : nat) (m : mask) (e : expr) (φ : value -n> Props) (r : res).
(** Ret **)
Program Definition eqV v : value -n> Props :=
n[(fun v' : value => v === v')].
Next Obligation.
intros v1 v2 EQv w n r; simpl in *; split; congruence.
Qed.
Next Obligation.
intros v1 v2 EQv w m r HLt; destruct n as [| n]; [now inversion HLt | simpl in *].
split; congruence.
Qed.
Lemma htRet e (HV : is_value e) m :
valid (ht m ⊤ e (eqV (exist _ e HV))).
Proof.
intros w' nn rr w _ n r' _ _ _; clear w' nn rr.
unfold wp; rewrite fixp_eq; fold (wp m).
intros w'; intros; split; [| split]; intros.
- exists w' r' s; split; [reflexivity | split; [| assumption] ].
simpl; reflexivity.
- assert (HT := values_stuck _ HV).
eapply HT in HStep; [contradiction | eassumption].
- subst e; assert (HT := fill_value _ _ HV); subst K.
revert HV; rewrite fill_empty; intros.
contradiction (fork_not_value _ HV).
Qed.
Implicit Type (C : Props).
Lemma wpO m e φ w r : wp m e φ w O r.
Proof.
unfold wp; rewrite fixp_eq; fold (wp m); intros w'; intros; now inversion HLt.
Qed.
(** Bind **)
Program Definition plugV m φ φ' K :=
n[(fun v : value => ht m (φ v) (K [[` v]]) φ')].
Next Obligation.
intros v1 v2 EQv w n r; simpl.
setoid_rewrite EQv at 1.
simpl in EQv; rewrite EQv; reflexivity.
Qed.
Next Obligation.
intros v1 v2 EQv; unfold ht; eapply (met_morph_nonexp _ _ box).
eapply (impl_dist (ComplBI := Props_BI)).
- apply φ; assumption.
- destruct n as [| n]; [apply dist_bound | simpl in EQv].
rewrite EQv; reflexivity.
Qed.
Lemma htBind P φ φ' K e m :
ht m P e φ ∧ all (plugV m φ φ' K) ⊑ ht m P (K [[ e ]]) φ'.
Proof.
intros wz nz rz [He HK] w HSw n r HLe _ HP.
specialize (He _ HSw _ _ HLe (unit_min _) HP).
rewrite HSw, <- HLe in HK; clear wz nz HSw HLe HP.
revert e w r He HK; induction n using wf_nat_ind; intros; rename H into IH.
unfold wp; rewrite fixp_eq; fold (wp m).
unfold wp in He; rewrite fixp_eq in He; fold (wp m) in He.
destruct (is_value_dec e) as [HVal | HNVal]; [clear IH |].
- intros w'; intros; edestruct He as [HV _]; try eassumption; [].
clear He HE; specialize (HV HVal); destruct HV as [w'' [r' [s' [HSw' [Hφ HE] ] ] ] ].
(* Fold the goal back into a wp *)
setoid_rewrite HSw'.
assert (HT : wp m (K [[ e ]]) φ' w'' (S k) r');
[| unfold wp in HT; rewrite fixp_eq in HT; fold (wp m) in HT;
eapply HT; [reflexivity | unfold lt; reflexivity | eassumption] ].
clear HE; specialize (HK (exist _ e HVal)).
do 30 red in HK; unfold proj1_sig in HK.
apply HK; [etransitivity; eassumption | apply HLt | apply unit_min | assumption].
- intros w'; intros; edestruct He as [_ [HS HF] ]; try eassumption; [].
split; [intros HVal; contradiction HNVal; assert (HT := fill_value _ _ HVal);
subst K; rewrite fill_empty in HVal; assumption | split; intros].
+ clear He HF HE; edestruct step_by_value as [K' EQK]; try eassumption; [].
subst K0; rewrite <- fill_comp in HDec; apply fill_inj2 in HDec.
edestruct HS as [w'' [r' [s' [HSw' [He HE] ] ] ] ]; try eassumption; [].
subst e; clear HStep HS.
do 3 eexists; split; [eassumption | split; [| eassumption] ].
rewrite <- fill_comp; apply IH; try assumption; [].
unfold lt in HLt; rewrite <- HSw', <- HSw, Le.le_n_Sn, HLt; apply HK.
+ clear He HS HE; edestruct fork_by_value as [K' EQK]; try eassumption; [].
subst K0; rewrite <- fill_comp in HDec; apply fill_inj2 in HDec.
edestruct HF as [w'' [rfk [rret [s' [HSw' [HWR [HWF HE] ] ] ] ] ] ];
try eassumption; []; subst e; clear HF.
do 4 eexists; split; [eassumption | split; [| split; eassumption] ].
rewrite <- fill_comp; apply IH; try assumption; [].
unfold lt in HLt; rewrite <- HSw', <- HSw, Le.le_n_Sn, HLt; apply HK.
Qed.
(** Consequence **)
Program Definition vsLift m1 m2 φ φ' :=
n[(fun v => vs m1 m2 (φ v) (φ' v))].
Next Obligation.
intros v1 v2 EQv; unfold vs.
rewrite EQv; reflexivity.
Qed.
Next Obligation.
intros v1 v2 EQv; unfold vs.
rewrite EQv; reflexivity.
Qed.
Lemma htCons P P' φ φ' m e :
vs m m P P' ∧ ht m P' e φ' ∧ all (vsLift m m φ' φ) ⊑ ht m P e φ.
Proof.
intros wz nz rz [ [HP He] Hφ] w HSw n r HLe _ Hp.
specialize (HP _ HSw _ _ HLe (unit_min _) Hp).
unfold wp; rewrite fixp_eq; fold (wp m).
rewrite <- HLe, HSw in He, Hφ; clear wz nz HSw HLe Hp.
intros w'; intros; edestruct HP with (mf := mask_emp) as [w'' [r' [s' [HSw' [Hp' HE'] ] ] ] ]; try eassumption;
[intros j; tauto | eapply erasure_equiv, HE; try reflexivity; unfold mask_emp, const; intros j; tauto |].
clear HP HE; rewrite HSw in He; specialize (He w'' HSw' _ r' HLt (unit_min _) Hp').
setoid_rewrite HSw'.
assert (HT : wp m e φ w'' (S k) r');
[| unfold wp in HT; rewrite fixp_eq in HT; fold (wp m) in HT;
eapply HT; [reflexivity | unfold lt; reflexivity |];
eapply erasure_equiv, HE'; try reflexivity; unfold mask_emp, const; intros j; tauto ].
unfold lt in HLt; rewrite HSw, HSw', <- HLt in Hφ; clear - He Hφ.
(* Second phase of the proof: got rid of the preconditions,
now induction takes care of the evaluation. *)
rename r' into r; rename w'' into w.
revert w r e He Hφ; generalize (S k) as n; clear k; induction n using wf_nat_ind.
rename H into IH; intros; unfold wp; rewrite fixp_eq; fold (wp m).
unfold wp in He; rewrite fixp_eq in He; fold (wp m).
intros w'; intros; edestruct He as [HV [HS HF] ]; try eassumption; [].
split; [intros HVal; clear HS HF IH | split; intros; [clear HV HF | clear HV HS] ].
- clear He HE; specialize (HV HVal); destruct HV as [w'' [r' [s' [HSw' [Hφ' HE] ] ] ] ].
eapply Hφ in Hφ'; [| etransitivity; eassumption | apply HLt | apply unit_min].
clear w n HSw Hφ HLt; edestruct Hφ' with (mf := mask_emp) as [w [r'' [s'' [HSw [Hφ HE'] ] ] ] ];
[reflexivity | apply le_n | intros j; tauto |
eapply erasure_equiv, HE; try reflexivity; unfold mask_emp, const; intros j; tauto |].
exists w r'' s''; split; [etransitivity; eassumption | split; [assumption |] ].
eapply erasure_equiv, HE'; try reflexivity.
unfold mask_emp, const; intros j; tauto.
- clear HE He; edestruct HS as [w'' [r' [s' [HSw' [He HE] ] ] ] ];
try eassumption; clear HS; fold (wp m) in He.
do 3 eexists; split; [eassumption | split; [| eassumption] ].
apply IH; try assumption; [].
unfold lt in HLt; rewrite Le.le_n_Sn, HLt, <- HSw', <- HSw; apply Hφ.
- clear HE He; fold (wp m) in HF; edestruct HF as [w'' [rfk [rret [s' [HSw' [HWF [HWR HE] ] ] ] ] ] ]; [eassumption |].
clear HF; do 4 eexists; split; [eassumption | split; [| split; eassumption] ].
apply IH; try assumption; [].
unfold lt in HLt; rewrite Le.le_n_Sn, HLt, <- HSw', <- HSw; apply Hφ.
Qed.
Lemma htACons m m' e P P' φ φ'
(HAt : atomic e)
(HSub : m' ⊆ m) :
vs m m' P P' ∧ ht m' P' e φ' ∧ all (vsLift m' m φ' φ) ⊑ ht m P e φ.
Proof.
intros wz nz rz [ [HP He] Hφ] w HSw n r HLe _ Hp.
specialize (HP _ HSw _ _ HLe (unit_min _) Hp).
unfold wp; rewrite fixp_eq; fold (wp m).
split; [intros HV; contradiction (atomic_not_value e) |].
split; [| intros; subst; contradiction (fork_not_atomic K e') ].
intros; rewrite <- HLe, HSw in He, Hφ; clear wz nz HSw HLe Hp.
edestruct HP with (mf := mask_emp) as [w'' [r' [s' [HSw' [Hp' HE'] ] ] ] ];
[eassumption | eassumption | intros j; tauto |
eapply erasure_equiv, HE; try reflexivity; unfold mask_emp, const; intros j; tauto |].
clear HP HE; rewrite HSw0 in He; specialize (He w'' HSw' _ r' HLt (unit_min _) Hp').
unfold lt in HLt; rewrite HSw0, <- HLt in Hφ; clear w n HSw0 HLt Hp'.
unfold wp in He; rewrite fixp_eq in He; fold (wp m') in He.
edestruct He as [_ [HS _] ];
[reflexivity | unfold lt; reflexivity |
eapply erasure_equiv, HE'; try reflexivity; unfold mask_emp, const; intros j; tauto |].
edestruct HS as [w [r'' [s'' [HSw [He' HE] ] ] ] ]; try eassumption; clear He HS HE'.
destruct k as [| k]; [exists w' r' s'; split; [reflexivity | split; [apply wpO | exact I] ] |].
edestruct atomic_step as [EQk HVal]; try eassumption; subst K.
rewrite fill_empty in *; subst ei.
setoid_rewrite HSw'; setoid_rewrite HSw.
rewrite HSw', HSw in Hφ; clear - HE He' Hφ HSub HVal.
unfold wp in He'; rewrite fixp_eq in He'; fold (wp m') in He'.
edestruct He' as [HV _]; [reflexivity | apply le_n | eassumption |].
clear HE He'; specialize (HV HVal); destruct HV as [w' [r [s [HSw [Hφ' HE] ] ] ] ].
eapply Hφ in Hφ'; [| assumption | apply Le.le_n_Sn | apply unit_min].
clear Hφ; edestruct Hφ' with (mf := mask_emp) as [w'' [r' [s' [HSw' [Hφ HE'] ] ] ] ];
[reflexivity | apply le_n | intros j; tauto |
eapply erasure_equiv, HE; try reflexivity; unfold mask_emp, const; intros j; tauto |].
clear Hφ' HE; exists w'' r' s'; split;
[etransitivity; eassumption | split; [| eapply erasure_equiv, HE'; try reflexivity; unfold mask_emp, const; intros j; tauto] ].
clear - Hφ; unfold wp; rewrite fixp_eq; fold (wp m).
intros w; intros; split; [intros HVal' | split; intros; exfalso].
- do 3 eexists; split; [reflexivity | split; [| eassumption] ].
unfold lt in HLt; rewrite HLt, <- HSw.
eapply φ, Hφ; [| apply le_n]; simpl; reflexivity.
- eapply values_stuck; eassumption.
- clear - HDec HVal; subst; assert (HT := fill_value _ _ HVal); subst.
rewrite fill_empty in HVal; now apply fork_not_value in HVal.
Qed.
(** Framing **)
(* TODO: mask framing *)
Lemma htFrame m P R e φ :
ht m P e φ ⊑ ht m (P * R) e (lift_bin sc φ (umconst R)).
Proof.
intros w n rz He w' HSw n' r HLe _ [r1 [r2 [EQr [HP HLR] ] ] ].
specialize (He _ HSw _ _ HLe (unit_min _) HP).
clear P w n rz HSw HLe HP; rename w' into w; rename n' into n.
revert e w r1 r EQr HLR He; induction n using wf_nat_ind; intros; rename H into IH.
unfold wp; rewrite fixp_eq; fold (wp m); intros w'; intros.
unfold wp in He; rewrite fixp_eq in He; fold (wp m) in He.
rewrite <- EQr, <- assoc in HE; edestruct He as [HV [HS HF] ]; try eassumption; [].
clear He; split; [intros HVal; clear HS HF IH HE | split; intros; [clear HV HF HE | clear HV HS HE] ].
- specialize (HV HVal); destruct HV as [w'' [r1' [s' [HSw' [Hφ HE] ] ] ] ].
rewrite assoc in HE; destruct (Some r1' · Some r2) as [r' |] eqn: EQr';
[| eapply erasure_not_empty in HE; [contradiction | now erewrite !pcm_op_zero by apply _] ].
do 3 eexists; split; [eassumption | split; [| eassumption] ].
exists r1' r2; split; [now rewrite EQr' | split; [assumption |] ].
unfold lt in HLt; rewrite HLt, <- HSw', <- HSw; apply HLR.
- edestruct HS as [w'' [r1' [s' [HSw' [He HE] ] ] ] ]; try eassumption; []; clear HS.
destruct k as [| k]; [exists w' r1' s'; split; [reflexivity | split; [apply wpO | exact I] ] |].
rewrite assoc in HE; destruct (Some r1' · Some r2) as [r' |] eqn: EQr';
[| eapply erasure_not_empty in HE; [contradiction | now erewrite !pcm_op_zero by apply _] ].
do 3 eexists; split; [eassumption | split; [| eassumption] ].
eapply IH; try eassumption; [rewrite <- EQr'; reflexivity |].
unfold lt in HLt; rewrite Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR.
- specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [s' [HSw' [HWF [HWR HE] ] ] ] ] ] ].
destruct k as [| k]; [exists w' rfk rret s'; split; [reflexivity | split; [apply wpO | split; [apply wpO | exact I] ] ] |].
rewrite assoc, <- (assoc (Some rfk)) in HE; destruct (Some rret · Some r2) as [rret' |] eqn: EQrret;
[| eapply erasure_not_empty in HE; [contradiction | now erewrite (comm _ 0), !pcm_op_zero by apply _] ].
do 4 eexists; split; [eassumption | split; [| split; eassumption] ].
eapply IH; try eassumption; [rewrite <- EQrret; reflexivity |].
unfold lt in HLt; rewrite Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR.
Qed.
Lemma htAFrame m P R e φ
(HAt : atomic e) :
ht m P e φ ⊑ ht m (P * ▹ R) e (lift_bin sc φ (umconst R)).
Proof.
intros w n rz He w' HSw n' r HLe _ [r1 [r2 [EQr [HP HLR] ] ] ].
specialize (He _ HSw _ _ HLe (unit_min _) HP).
clear rz n HLe; unfold wp; rewrite fixp_eq; fold (wp m).
clear w HSw; rename n' into n; rename w' into w; intros w'; intros.
split; [intros; exfalso | split; intros; [| exfalso] ].
- contradiction (atomic_not_value e).
- destruct k as [| k];
[exists w' r s; split; [reflexivity | split; [apply wpO | exact I] ] |].
unfold wp in He; rewrite fixp_eq in He; fold (wp m) in He.
rewrite <- EQr, <- assoc in HE.
edestruct He as [_ [HeS _] ]; try eassumption; [].
edestruct HeS as [w'' [r1' [s' [HSw' [He' HE'] ] ] ] ]; try eassumption; [].
clear HE He HeS; rewrite assoc in HE'.
destruct (Some r1' · Some r2) as [r' |] eqn: EQr';
[| eapply erasure_not_empty in HE';
[contradiction | now erewrite !pcm_op_zero by apply _] ].
do 3 eexists; split; [eassumption | split; [| eassumption] ].
edestruct atomic_step as [EQK HVal]; try eassumption; []; subst K.
unfold lt in HLt; rewrite <- HLt, HSw, HSw' in HLR; simpl in HLR.
clear - He' HVal EQr' HLR; rename w'' into w.
unfold wp; rewrite fixp_eq; fold (wp m); intros w'; intros.
split; [intros HVal' | split; intros; exfalso].
+ unfold wp in He'; rewrite fixp_eq in He'; fold (wp m) in He'.
rewrite <- EQr', <- assoc in HE; edestruct He' as [HV _]; try eassumption; [].
revert HVal'; rewrite fill_empty in *; intros; specialize (HV HVal').
destruct HV as [w'' [r1'' [s'' [HSw' [Hφ HE'] ] ] ] ].
rewrite assoc in HE'; destruct (Some r1'' · Some r2) as [r'' |] eqn: EQr'';
[| eapply erasure_not_empty in HE';
[contradiction | now erewrite !pcm_op_zero by apply _] ].
do 3 eexists; split; [eassumption | split; [| eassumption] ].
exists r1'' r2; split; [now rewrite EQr'' | split; [assumption |] ].
unfold lt in HLt; rewrite <- HLt, HSw, HSw' in HLR; apply HLR.
+ rewrite fill_empty in HDec; eapply values_stuck; eassumption.
+ rewrite fill_empty in HDec; subst; clear -HVal.
assert (HT := fill_value _ _ HVal); subst K; rewrite fill_empty in HVal.
contradiction (fork_not_value e').
- subst; clear -HAt; eapply fork_not_atomic; eassumption.
Qed.
(** Fork **)
Lemma htFork m P R e :
ht m P e (umconst ⊤) ⊑ ht m (P * ▹ R) (fork e) (lift_bin sc (eqV (exist _ fork_ret fork_ret_is_value)) (umconst R)).
Proof.
intros w n rz He w' HSw n' r HLe _ [r1 [r2 [EQr [HP HLR] ] ] ].
specialize (He _ HSw _ _ HLe (unit_min _) HP).
clear rz n HLe; unfold wp; rewrite fixp_eq; fold (wp m).
clear w HSw; rename n' into n; rename w' into w; intros w'; intros.
split; [intros; contradiction (fork_not_value e) | split; intros; [exfalso |] ].
- assert (HT := fill_fork _ _ _ HDec); subst K; rewrite fill_empty in HDec; subst.
eapply fork_stuck with (K := ε); [| eassumption]; reflexivity.
- assert (HT := fill_fork _ _ _ HDec); subst K; rewrite fill_empty in HDec.
apply fork_inj in HDec; subst e'; rewrite <- EQr in HE.
unfold lt in HLt; rewrite <- HLt, <- Le.le_n_Sn, HSw in He.
rewrite <- Le.le_n_Sn in HE.
do 4 eexists; split; [reflexivity | split; [| split; eassumption] ].
rewrite fill_empty; unfold wp; rewrite fixp_eq; fold (wp m).
rewrite <- HLt, HSw in HLR; simpl in HLR.
clear - HLR; intros w''; intros; split; [intros | split; intros; exfalso].
+ do 3 eexists; split; [reflexivity | split; [| eassumption] ].
exists (pcm_unit _) r2; split; [now erewrite pcm_op_unit by apply _ |].
split; [| unfold lt in HLt; rewrite <- HLt, HSw in HLR; apply HLR].
simpl; reflexivity.
+ eapply values_stuck; eassumption || exact fork_ret_is_value.
+ assert (HV := fork_ret_is_value); rewrite HDec in HV; clear HDec.
assert (HT := fill_value _ _ HV);subst K; rewrite fill_empty in HV.
eapply fork_not_value; eassumption.
Qed.
End HoareTripleProperties.
End Iris.