Commit f7b4fa56 authored by Ralf Jung's avatar Ralf Jung

fix Proof Using warnings

parent 17eb4ec8
......@@ -442,13 +442,11 @@ End fixpointK.
(** Mutual fixpoints *)
Section fixpointAB.
Local Unset Default Proof Using.
Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
Context (fA : A B A).
Context (fB : A B B).
Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
Context {fA_contractive : n, Proper (dist_later n ==> dist n ==> dist n) fA}.
Context {fB_contractive : n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
......@@ -459,7 +457,7 @@ Section fixpointAB.
Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
Proof. solve_contractive. Qed.
Proof using fA_contractive. solve_contractive. Qed.
Definition fixpoint_A : A := fixpoint fixpoint_AA.
Definition fixpoint_B : B := fixpoint_AB fixpoint_A.
......@@ -470,11 +468,11 @@ Section fixpointAB.
Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.
Instance: Proper (() ==> () ==> ()) fA.
Proof.
Proof using fA_contractive.
apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
Qed.
Instance: Proper (() ==> () ==> ()) fB.
Proof.
Proof using fB_contractive.
apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
Qed.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment