Commit ed383a77 by Ralf Jung

### Make everything compile with Coq 8.6

parent a5f94780
 ... @@ -2234,7 +2234,12 @@ Section Forall_Exists. ... @@ -2234,7 +2234,12 @@ Section Forall_Exists. Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l. Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l. Proof. intro. destruct (Forall_Exists_dec dec l); intuition. Qed. Proof. intro. destruct (Forall_Exists_dec dec l); intuition. Qed. Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l. Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l. Proof. by destruct (Forall_Exists_dec (λ x, swap_if (decide (P x))) l). Qed. Proof. (* TODO: Coq 8.6 needs type annotation here, Coq 8.5 did not. Should we report this? *) by destruct (@Forall_Exists_dec (not ∘ P) _ (λ x : A, swap_if (decide (P x))) l). Qed. Global Instance Forall_dec l : Decision (Forall P l) := Global Instance Forall_dec l : Decision (Forall P l) := match Forall_Exists_dec dec l with match Forall_Exists_dec dec l with | left H => left H | left H => left H ... ...
 ... @@ -52,7 +52,8 @@ Section ndisjoint. ... @@ -52,7 +52,8 @@ Section ndisjoint. Lemma ndot_ne_disjoint N x y : x ≠ y → N .@ x ⊥ N .@ y. Lemma ndot_ne_disjoint N x y : x ≠ y → N .@ x ⊥ N .@ y. Proof. Proof. intros Hxy a. rewrite !nclose_eq !elem_coPset_suffixes !ndot_eq. intros Hxy a. rewrite !nclose_eq !elem_coPset_suffixes !ndot_eq. intros [qx ->] [qy]. by intros [= ?%encode_inj]%list_encode_suffix_eq. intros [qx ->] [qy Hqy]. revert Hqy. by intros [= ?%encode_inj]%list_encode_suffix_eq. Qed. Qed. Lemma ndot_preserve_disjoint_l N E x : nclose N ⊥ E → nclose (N .@ x) ⊥ E. Lemma ndot_preserve_disjoint_l N E x : nclose N ⊥ E → nclose (N .@ x) ⊥ E. ... ...
 ... @@ -834,7 +834,7 @@ Tactic Notation "iRevertIntros" constr(Hs) "with" tactic(tac) := ... @@ -834,7 +834,7 @@ Tactic Notation "iRevertIntros" constr(Hs) "with" tactic(tac) := | ESelName ?p ?H :: ?Hs => | ESelName ?p ?H :: ?Hs => iRevert H; go Hs; iRevert H; go Hs; let H' := let H' := match p with true => constr:[IAlwaysElim (IName H)] | false => H end in match p with true => constr:([IAlwaysElim (IName H)]) | false => H end in iIntros H' iIntros H' end in end in iElaborateSelPat Hs go. iElaborateSelPat Hs go. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!