Commit eb3283dc by Robbert Krebbers

### Tests for `big_sepL2`.

parent 982a55c7
 ... ... @@ -88,6 +88,32 @@ Tactic failure: iFrame: cannot frame Q. --------------------------------------∗ P 1 subgoal PROP : sbi x1, x2 : nat l1, l2 : list nat P : PROP ============================ "HP" : P _ : [∗ list] y1;y2 ∈ [];l2, ⌜y1 = y2⌝ _ : ⌜x1 = x2⌝ ∗ ([∗ list] y1;y2 ∈ l1;(l2 ++ l2), ⌜y1 = y2⌝) --------------------------------------∗ P ∨ True ∗ ([∗ list] _;_ ∈ l1;l2, True) 1 subgoal PROP : sbi Φ : nat → nat → PROP x1, x2 : nat l1, l2 : list nat ============================ _ : Φ x1 x2 _ : [∗ list] y1;y2 ∈ l1;l2, Φ y1 y2 --------------------------------------∗ Φ x1 x2 1 subgoal PROP : sbi ... ...
 ... ... @@ -491,6 +491,23 @@ Lemma test_big_sepL_simpl x (l : list nat) P : ([∗ list] y ∈ x :: l, ⌜ y = y ⌝) -∗ P. Proof. iIntros "HP ?? /=". Show. done. Qed. Lemma test_big_sepL2_simpl x1 x2 (l1 l2 : list nat) P : P -∗ ([∗ list] k↦y1;y2 ∈ []; l2, ⌜ y1 = y2 ⌝) -∗ ([∗ list] y1;y2 ∈ x1 :: l1; (x2 :: l2) ++ l2, ⌜ y1 = y2 ⌝) -∗ P ∨ ([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, True). Proof. iIntros "HP ?? /=". Show. by iLeft. Qed. Lemma test_big_sepL2_iDestruct (Φ : nat → nat → PROP) x1 x2 (l1 l2 : list nat) : ([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, Φ y1 y2) -∗ Φ x1 x2. Proof. iIntros "[??]". Show. iFrame. Qed. Lemma test_big_sepL2_iFrame (Φ : nat → nat → PROP) (l1 l2 : list nat) P : Φ 0 10 -∗ ([∗ list] y1;y2 ∈ l1;l2, Φ y1 y2) -∗ ([∗ list] y1;y2 ∈ (0 :: l1);(10 :: l2), Φ y1 y2). Proof. iIntros "\$ ?". iFrame. Qed. End tests. (** Test specifically if certain things print correctly. *) ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!