Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
eb0fb61d
Commit
eb0fb61d
authored
Feb 13, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
let Coq infer the validity predicate
parent
2136375b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
4 deletions
+4
-4
heap_lang/heap.v
heap_lang/heap.v
+3
-3
program_logic/auth.v
program_logic/auth.v
+1
-1
No files found.
heap_lang/heap.v
View file @
eb0fb61d
...
...
@@ -43,7 +43,7 @@ Section heap.
Hint
Resolve
to_heap_valid
.
Global
Instance
heap_inv_proper
:
Proper
((
≡
)
==>
(
≡
))
(
heap_inv
HeapI
).
Proof
.
by
intros
h1
h2
;
fold_leibniz
=>
->.
Qed
.
Proof
.
intros
h1
h2
.
by
fold_leibniz
=>
->.
Qed
.
Lemma
heap_own_op
γ
σ
1
σ
2
:
(
heap_own
HeapI
γ
σ
1
★
heap_own
HeapI
γ
σ
2
)%
I
...
...
@@ -59,7 +59,7 @@ Section heap.
Proof
.
(* TODO. *)
Abort
.
(* TODO:
Prove
equivalence to a big sum
.
*)
(* TODO:
Do we want
equivalence to a big sum
?
*)
Lemma
heap_alloc
N
σ
:
ownP
σ
⊑
pvs
N
N
(
∃
γ
,
heap_ctx
HeapI
γ
N
∧
heap_own
HeapI
γ
σ
).
...
...
@@ -73,7 +73,7 @@ Section heap.
P
⊑
wp
E
(
Load
(
Loc
l
))
Q
.
Proof
.
rewrite
/
heap_ctx
/
heap_own
.
intros
HN
Hl
Hctx
HP
.
eapply
(
auth_fsa
(
heap_inv
HeapI
)
(
wp_fsa
(
Load
_
)
_
)
(
λ
_
,
True
)
id
).
eapply
(
auth_fsa
(
heap_inv
HeapI
)
(
wp_fsa
(
Load
_
)
_
)
id
).
{
eassumption
.
}
{
eassumption
.
}
rewrite
HP
=>{
HP
Hctx
HN
}.
apply
sep_mono
;
first
done
.
apply
forall_intro
=>
hf
.
apply
wand_intro_l
.
rewrite
/
heap_inv
.
...
...
program_logic/auth.v
View file @
eb0fb61d
...
...
@@ -84,7 +84,7 @@ Section auth.
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma
auth_fsa
{
X
:
Type
}
{
FSA
}
(
FSAs
:
FrameShiftAssertion
(
A
:
=
X
)
FSA
)
Lv
L
`
{!
LocalUpdate
Lv
L
}
N
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
γ
a
:
L
`
{!
LocalUpdate
Lv
L
}
N
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
γ
a
:
nclose
N
⊆
E
→
P
⊑
auth_ctx
AuthI
γ
N
φ
→
P
⊑
(
auth_own
AuthI
γ
a
★
(
∀
a'
,
■✓
(
a
⋅
a'
)
★
▷φ
(
a
⋅
a'
)
-
★
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment