Commit eb0fb61d authored by Ralf Jung's avatar Ralf Jung
Browse files

let Coq infer the validity predicate

parent 2136375b
......@@ -43,7 +43,7 @@ Section heap.
Hint Resolve to_heap_valid.
Global Instance heap_inv_proper : Proper (() ==> ()) (heap_inv HeapI).
Proof. by intros h1 h2; fold_leibniz=> ->. Qed.
Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
Lemma heap_own_op γ σ1 σ2 :
(heap_own HeapI γ σ1 heap_own HeapI γ σ2)%I
......@@ -59,7 +59,7 @@ Section heap.
Proof. (* TODO. *)
(* TODO: Prove equivalence to a big sum. *)
(* TODO: Do we want equivalence to a big sum? *)
Lemma heap_alloc N σ :
ownP σ pvs N N ( γ, heap_ctx HeapI γ N heap_own HeapI γ σ).
......@@ -73,7 +73,7 @@ Section heap.
P wp E (Load (Loc l)) Q.
rewrite /heap_ctx /heap_own. intros HN Hl Hctx HP.
eapply (auth_fsa (heap_inv HeapI) (wp_fsa (Load _) _) (λ _, True) id).
eapply (auth_fsa (heap_inv HeapI) (wp_fsa (Load _) _) id).
{ eassumption. } { eassumption. }
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
......@@ -84,7 +84,7 @@ Section auth.
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma auth_fsa {X : Type} {FSA} (FSAs : FrameShiftAssertion (A:=X) FSA)
Lv L `{!LocalUpdate Lv L} N E P (Q : X iPropG Λ Σ) γ a :
L `{!LocalUpdate Lv L} N E P (Q : X iPropG Λ Σ) γ a :
nclose N E
P auth_ctx AuthI γ N φ
P (auth_own AuthI γ a ( a', ■✓(a a') ▷φ (a a') -
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment