Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Iris
Commits
e4c96015
Commit
e4c96015
authored
Jun 01, 2016
by
Robbert Krebbers
Browse files
Notations for X ⊆ Y ⊆ Z.
parent
d0131be5
Changes
2
Show whitespace changes
Inline
Side-by-side
prelude/base.v
View file @
e4c96015
...
...
@@ -637,6 +637,11 @@ Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : C_scope.
Notation
"( X ⊄ )"
:
=
(
λ
Y
,
X
⊄
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"( ⊄ X )"
:
=
(
λ
Y
,
Y
⊄
X
)
(
only
parsing
)
:
C_scope
.
Notation
"X ⊆ Y ⊆ Z"
:
=
(
X
⊆
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊆ Y ⊂ Z"
:
=
(
X
⊆
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊆ Z"
:
=
(
X
⊂
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊂ Z"
:
=
(
X
⊂
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
...
...
program_logic/invariants.v
View file @
e4c96015
...
...
@@ -34,7 +34,7 @@ Qed.
(** Fairly explicit form of opening invariants *)
Lemma
inv_open
E
N
P
:
nclose
N
⊆
E
→
inv
N
P
⊢
∃
E'
,
■
(
E
∖
nclose
N
⊆
E'
∧
E'
⊆
E
)
★
inv
N
P
⊢
∃
E'
,
■
(
E
∖
nclose
N
⊆
E'
⊆
E
)
★
|={
E
,
E'
}=>
▷
P
★
(
▷
P
={
E'
,
E
}=
★
True
).
Proof
.
rewrite
/
inv
.
iIntros
{?}
"Hinv"
.
iDestruct
"Hinv"
as
{
i
}
"[% #Hi]"
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment