Commit e181f737 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

The types of propositions for monPred lemma need to be [monPred I PROP] and...

The types of propositions for monPred lemma need to be [monPred I PROP] and not [bi_car (monPredI I PROP)], otherwise iIntoValid fails in a very weird way. Seems to be related to a Coq bug.
parent c78c8b7a
Pipeline #6266 passed with stages
in 3 minutes and 27 seconds
......@@ -395,11 +395,12 @@ End canonical_sbi.
Section bi_facts.
Context {I : biIndex} {PROP : bi}.
Local Notation monPred := (monPred I PROP).
Local Notation monPredI := (monPredI I PROP).
Local Notation monPred_at := (@monPred_at I PROP).
Local Notation BiIndexBottom := (@BiIndexBottom I).
Implicit Types i : I.
Implicit Types P Q : monPredI.
Implicit Types P Q : monPred.
(** Instances *)
......@@ -565,9 +566,9 @@ Lemma monPred_at_or i P Q : (P ∨ Q) i ⊣⊢ P i ∨ Q i.
Proof. by unseal. Qed.
Lemma monPred_at_impl i P Q : (P Q) i j, i j P j Q j.
Proof. by unseal. Qed.
Lemma monPred_at_forall {A} i (Φ : A monPredI) : ( x, Φ x) i x, Φ x i.
Lemma monPred_at_forall {A} i (Φ : A monPred) : ( x, Φ x) i x, Φ x i.
Proof. by unseal. Qed.
Lemma monPred_at_exist {A} i (Φ : A monPredI) : ( x, Φ x) i x, Φ x i.
Lemma monPred_at_exist {A} i (Φ : A monPred) : ( x, Φ x) i x, Φ x i.
Proof. by unseal. Qed.
Lemma monPred_at_sep i P Q : (P Q) i P i Q i.
Proof. by unseal. Qed.
......@@ -743,9 +744,10 @@ End bi_facts.
Section sbi_facts.
Context {I : biIndex} {PROP : sbi}.
Local Notation monPred := (monPred I PROP).
Local Notation monPredSI := (monPredSI I PROP).
Implicit Types i : I.
Implicit Types P Q : monPredSI.
Implicit Types P Q : monPred.
Global Instance monPred_at_timeless P i : Timeless P Timeless (P i).
Proof. move => [] /(_ i). unfold Timeless. by unseal. Qed.
......@@ -810,7 +812,7 @@ Lemma monPred_at_except_0 i P : (◇ P) i ⊣⊢ ◇ P i.
Proof. by unseal. Qed.
Lemma monPred_fupd_embed `{FUpdFacts PROP} E1 E2 (P : PROP) :
|={E1,E2}=> P fupd E1 E2 (PROP:=monPred I PROP) P.
|={E1,E2}=> P fupd E1 E2 (PROP:=monPred) P.
Proof.
unseal. split=>i /=. setoid_rewrite bi.pure_impl_forall. apply bi.equiv_spec; split.
- by do 2 apply bi.forall_intro=>?.
......
......@@ -50,4 +50,9 @@ Section tests.
iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP".
iSpecialize ("HW" with "HP"). done.
Qed.
Lemma test_apply_in_elim (P : monPredI) (i : I) : monPred_in i P i - P.
Proof.
iIntros. by iApply monPred_in_elim.
Qed.
End tests.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment