Commit e15c090e by Robbert Krebbers

### Choice principle for finite types.

parent 8013e09a
 (* Copyright (c) 2012-2015, Robbert Krebbers. *) (* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (* This file is distributed under the terms of the BSD license. *) From iris.prelude Require Export countable list. From iris.prelude Require Export countable vector. Class Finite A `{∀ x y : A, Decision (x = y)} := { Class Finite A `{∀ x y : A, Decision (x = y)} := { enum : list A; enum : list A; ... @@ -61,6 +61,39 @@ Proof. ... @@ -61,6 +61,39 @@ Proof. exists y. by rewrite !Nat2Pos.id by done. exists y. by rewrite !Nat2Pos.id by done. Qed. Qed. Definition encode_fin `{Finite A} (x : A) : fin (card A) := Fin.of_nat_lt (encode_lt_card x). Program Definition decode_fin `{Finite A} (i : fin (card A)) : A := match Some_dec (decode_nat i) return _ with | inleft (exist x _) => x | inright _ => _ end. Next Obligation. intros A ?? i ?; exfalso. destruct (encode_decode A i); naive_solver auto using fin_to_nat_lt. Qed. Lemma decode_encode_fin `{Finite A} (x : A) : decode_fin (encode_fin x) = x. Proof. unfold decode_fin, encode_fin. destruct (Some_dec _) as [[x' Hx]|Hx]. { by rewrite fin_to_of_nat, decode_encode_nat in Hx; simplify_eq. } exfalso; by rewrite ->fin_to_of_nat, decode_encode_nat in Hx. Qed. Lemma fin_choice {n} {B : fin n → Type} (P : ∀ i, B i → Prop) : (∀ i, ∃ y, P i y) → ∃ f, ∀ i, P i (f i). Proof. induction n as [|n IH]; intros Hex. { exists (fin_0_inv _); intros i; inv_fin i. } destruct (IH _ _ (λ i, Hex (FS i))) as [f Hf], (Hex 0%fin) as [y Hy]. exists (fin_S_inv _ y f); intros i; by inv_fin i. Qed. Lemma finite_choice `{Finite A} {B : A → Type} (P : ∀ x, B x → Prop) : (∀ x, ∃ y, P x y) → ∃ f, ∀ x, P x (f x). Proof. intros Hex. destruct (fin_choice _ (λ i, Hex (decode_fin i))) as [f ?]. exists (λ x, eq_rect _ _ (f(encode_fin x)) _ (decode_encode_fin x)); intros x. destruct (decode_encode_fin x); simpl; auto. Qed. Lemma card_0_inv P `{finA: Finite A} : card A = 0 → A → P. Lemma card_0_inv P `{finA: Finite A} : card A = 0 → A → P. Proof. Proof. intros ? x. destruct finA as [[|??] ??]; simplify_eq. intros ? x. destruct finA as [[|??] ??]; simplify_eq. ... @@ -297,3 +330,18 @@ Proof. ... @@ -297,3 +330,18 @@ Proof. induction (enum A) as [|x xs IH]; intros l; simpl; auto. induction (enum A) as [|x xs IH]; intros l; simpl; auto. by rewrite app_length, fmap_length, IH. by rewrite app_length, fmap_length, IH. Qed. Qed. Fixpoint fin_enum (n : nat) : list (fin n) := match n with 0 => [] | S n => 0%fin :: FS <\$> fin_enum n end. Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}. Next Obligation. intros n. induction n; simpl; constructor. - rewrite elem_of_list_fmap. by intros (?&?&?). - by apply (NoDup_fmap _). Qed. Next Obligation. intros n i. induction i as [|n i IH]; simpl; rewrite elem_of_cons, ?elem_of_list_fmap; eauto. Qed. Lemma fin_card n : card (fin n) = n. Proof. unfold card; simpl. induction n; simpl; rewrite ?fmap_length; auto. Qed.
 ... @@ -5,7 +5,7 @@ ... @@ -5,7 +5,7 @@ definitions from the standard library, but renames or changes their notations, definitions from the standard library, but renames or changes their notations, so that it becomes more consistent with the naming conventions in this so that it becomes more consistent with the naming conventions in this development. *) development. *) From iris.prelude Require Import list finite. From iris.prelude Require Export list. Open Scope vector_scope. Open Scope vector_scope. (** * The fin type *) (** * The fin type *) ... @@ -82,21 +82,6 @@ Proof. ... @@ -82,21 +82,6 @@ Proof. revert m H. induction n; intros [|?]; simpl; auto; intros; exfalso; lia. revert m H. induction n; intros [|?]; simpl; auto; intros; exfalso; lia. Qed. Qed. Fixpoint fin_enum (n : nat) : list (fin n) := match n with 0 => [] | S n => 0%fin :: FS <\$> fin_enum n end. Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}. Next Obligation. intros n. induction n; simpl; constructor. - rewrite elem_of_list_fmap. by intros (?&?&?). - by apply (NoDup_fmap _). Qed. Next Obligation. intros n i. induction i as [|n i IH]; simpl; rewrite elem_of_cons, ?elem_of_list_fmap; eauto. Qed. Lemma fin_card n : card (fin n) = n. Proof. unfold card; simpl. induction n; simpl; rewrite ?fmap_length; auto. Qed. (** * Vectors *) (** * Vectors *) (** The type [vec n] represents lists of consisting of exactly [n] elements. (** The type [vec n] represents lists of consisting of exactly [n] elements. Whereas the standard library declares exactly the same notations for vectors as Whereas the standard library declares exactly the same notations for vectors as ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!