Commit e14e9ec2 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan

Merge uPred_mono and uPred_closed.

parent cbb493e7
......@@ -30,11 +30,11 @@ Import uPred.
Lemma laterN_big n a x φ: {n} x a n (^a ⌜φ⌝)%I n x φ.
Proof.
induction 2 as [| ?? IHle].
- induction a; repeat (rewrite //= || uPred.unseal).
- induction a; repeat (rewrite //= || uPred.unseal).
intros Hlater. apply IHa; auto using cmra_validN_S.
move:Hlater; repeat (rewrite //= || uPred.unseal).
move:Hlater; repeat (rewrite //= || uPred.unseal).
- intros. apply IHle; auto using cmra_validN_S.
eapply uPred_closed; eauto using cmra_validN_S.
eapply uPred_mono; eauto using cmra_validN_S.
Qed.
Lemma laterN_small n a x φ: {n} x n < a (^a ⌜φ⌝)%I n x.
......@@ -46,15 +46,15 @@ Proof.
- induction n as [| n IHn]; [| move: IHle];
repeat (rewrite //= || uPred.unseal).
red; rewrite //=. intros.
eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S.
eapply (uPred_mono _ _ (S n)); eauto using cmra_validN_S.
Qed.
(* It is easy to show that most of the basic properties of bupd that
are used throughout Iris hold for nnupd.
are used throughout Iris hold for nnupd.
In fact, the first three properties that follow hold for any
modality of the form (- -∗ Q) -∗ Q for arbitrary Q. The situation
here is slightly different, because nnupd is of the form
here is slightly different, because nnupd is of the form
∀ n, (- -∗ (Q n)) -∗ (Q n), but the proofs carry over straightforwardly.
*)
......@@ -77,8 +77,8 @@ Proof.
Qed.
Lemma nnupd_ownM_updateP x (Φ : M Prop) :
x ~~>: Φ uPred_ownM x =n=> y, ⌜Φ y uPred_ownM y.
Proof.
intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal.
Proof.
intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal.
intros n y ? Hown a.
red; rewrite //= => n' yf ??.
inversion Hown as (x'&Hequiv).
......@@ -87,18 +87,18 @@ Proof.
case (decide (a n')).
- intros Hle Hwand.
exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y' x'))); eauto.
* rewrite comm -assoc. done.
* rewrite comm -assoc. done.
* eexists. split; eapply uPred_mono; red; rewrite //=; eauto.
- intros; assert (n' < a). omega.
* rewrite comm -assoc. done.
* rewrite comm -assoc. done.
* exists y'. split=>//. by exists x'.
- intros; assert (n' < a). omega.
move: laterN_small. uPred.unseal.
naive_solver.
Qed.
(* However, the transitivity property seems to be much harder to
prove. This is surprising, because transitivity does hold for
prove. This is surprising, because transitivity does hold for
modalities of the form (- -∗ Q) -∗ Q. What goes wrong when we quantify
now over n?
now over n?
*)
Remark nnupd_trans P: (|=n=> |=n=> P) (|=n=> P).
......@@ -111,7 +111,7 @@ Proof.
(* Oops -- the exponents of the later modality don't match up! *)
Abort.
(* Instead, we will need to prove this in the model. We start by showing that
(* Instead, we will need to prove this in the model. We start by showing that
nnupd is the limit of a the following sequence:
(- -∗ False) - ∗ False,
......@@ -121,12 +121,12 @@ Abort.
Then, it is easy enough to show that each of the uPreds in this sequence
is transitive. It turns out that this implies that nnupd is transitive. *)
(* The definition of the sequence above: *)
Fixpoint uPred_nnupd_k {M} k (P: uPred M) : uPred M :=
((P - ^k False) - ^k False)
match k with
match k with
O => True
| S k' => uPred_nnupd_k k' P
end.
......@@ -138,11 +138,11 @@ Notation "|=n=>_ k Q" := (uPred_nnupd_k k Q)
(* One direction of the limiting process is easy -- nnupd implies nnupd_k for each k *)
Lemma nnupd_trunc1 k P: (|=n=> P) |=n=>_k P.
Proof.
induction k.
- rewrite /uPred_nnupd_k /uPred_nnupd.
induction k.
- rewrite /uPred_nnupd_k /uPred_nnupd.
rewrite (forall_elim 0) //= right_id //.
- simpl. apply and_intro; auto.
rewrite /uPred_nnupd.
rewrite /uPred_nnupd.
rewrite (forall_elim (S k)) //=.
Qed.
......@@ -190,10 +190,10 @@ Lemma nnupd_nnupd_k_dist k P: (|=n=> P)%I ≡{k}≡ (|=n=>_k P)%I.
*** intros. exfalso. assert (n k'). omega.
assert (n = S k n < S k) as [->|] by omega.
**** eapply laterN_big; eauto; unseal. eapply HnnP; eauto.
**** move:nnupd_k_elim. unseal. intros Hnnupdk.
**** move:nnupd_k_elim. unseal. intros Hnnupdk.
eapply laterN_big; eauto. unseal.
eapply (Hnnupdk n k); first omega; eauto.
exists x, x'. split_and!; eauto. eapply uPred_closed; eauto.
exists x, x'. split_and!; eauto. eapply uPred_mono; eauto.
** intros HP. eapply IHk; auto.
move:HP. unseal. intros (?&?); naive_solver.
Qed.
......@@ -203,13 +203,13 @@ Lemma nnupd_k_intro k P: P ⊢ (|=n=>_k P).
Proof.
induction k; rewrite //= ?right_id.
- apply wand_intro_l. apply wand_elim_l.
- apply and_intro; auto.
- apply and_intro; auto.
apply wand_intro_l. apply wand_elim_l.
Qed.
Lemma nnupd_k_mono k P Q: (P Q) (|=n=>_k P) (|=n=>_k Q).
Proof.
induction k; rewrite //= ?right_id=>HPQ.
induction k; rewrite //= ?right_id=>HPQ.
- do 2 (apply wand_mono; auto).
- apply and_mono; auto; do 2 (apply wand_mono; auto).
Qed.
......@@ -227,7 +227,7 @@ Lemma nnupd_k_trans k P: (|=n=>_k |=n=>_k P) ⊢ (|=n=>_k P).
Proof.
revert P.
induction k; intros P.
- rewrite //= ?right_id. apply wand_intro_l.
- rewrite //= ?right_id. apply wand_intro_l.
rewrite {1}(nnupd_k_intro 0 (P - False)%I) //= ?right_id. apply wand_elim_r.
- rewrite {2}(nnupd_k_unfold k P).
apply and_intro.
......@@ -262,8 +262,8 @@ Proof.
case (decide (a n')).
- intros Hle Hwand.
exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto.
* rewrite comm. done.
* rewrite comm. done.
* rewrite comm. done.
* rewrite comm. done.
- intros; assert (n' < a). omega.
move: laterN_small. uPred.unseal.
naive_solver.
......@@ -299,23 +299,23 @@ End classical.
Lemma nnupd_dne φ: (|=n=> ¬¬ φ φ⌝: uPred M)%I.
Proof.
rewrite /uPred_nnupd. apply forall_intro=>n.
apply wand_intro_l. rewrite ?right_id.
apply wand_intro_l. rewrite ?right_id.
assert ( φ, ¬¬¬¬φ ¬¬φ) by naive_solver.
assert (Hdne: ¬¬ (¬¬φ φ)) by naive_solver.
split. unseal. intros n' ?? Hupd.
case (decide (n' < n)).
- intros. move: laterN_small. unseal. naive_solver.
- intros. assert (n n'). omega.
- intros. assert (n n'). omega.
exfalso. specialize (Hupd n' ε).
eapply Hdne. intros Hfal.
eapply laterN_big; eauto.
eapply laterN_big; eauto.
unseal. rewrite right_id in Hupd *; naive_solver.
Qed.
(* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy
under classical axioms) directly without passing through the proofs for bupd: *)
Lemma adequacy_helper1 P n k x:
{S n + k} x ¬¬ (Nat.iter (S n) (λ P, |=n=> P)%I P (S n + k) x)
{S n + k} x ¬¬ (Nat.iter (S n) (λ P, |=n=> P)%I P (S n + k) x)
¬¬ ( x', {n + k} (x') Nat.iter n (λ P, |=n=> P)%I P (n + k) (x')).
Proof.
revert k P x. induction n.
......@@ -325,12 +325,12 @@ Proof.
specialize (Hf3 (S k) (S k) ε). rewrite right_id in Hf3 *. unseal.
intros Hf3. eapply Hf3; eauto.
intros ??? Hx'. rewrite left_id in Hx' *=> Hx'.
unseal.
unseal.
assert (n' < S k n' = S k) as [|] by omega.
* intros. move:(laterN_small n' (S k) x' False). rewrite //=. unseal. intros Hsmall.
eapply Hsmall; eauto.
* subst. intros. exfalso. eapply Hf2. exists x'. split; eauto using cmra_validN_S.
- intros k P x Hx. rewrite ?Nat_iter_S_r.
- intros k P x Hx. rewrite ?Nat_iter_S_r.
replace (S (S n) + k) with (S n + (S k)) by omega.
replace (S n + k) with (n + (S k)) by omega.
intros. eapply IHn. replace (S n + S k) with (S (S n) + k) by omega. eauto.
......@@ -338,7 +338,7 @@ Proof.
Qed.
Lemma adequacy_helper2 P n k x:
{S n + k} x ¬¬ (Nat.iter (S n) (λ P, |=n=> P)%I P (S n + k) x)
{S n + k} x ¬¬ (Nat.iter (S n) (λ P, |=n=> P)%I P (S n + k) x)
¬¬ ( x', {k} (x') Nat.iter 0 (λ P, |=n=> P)%I P k (x')).
Proof.
revert x. induction n.
......
......@@ -35,11 +35,10 @@ Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
{| uPred_holds n x := n' x',
x x' n' n {n'} x' P n' x' Q n' x' |}.
Next Obligation.
intros M P Q n1 x1 x1' HPQ [x2 Hx1'] n2 x3 [x4 Hx3] ?; simpl in *.
intros M P Q n1 n1' x1 x1' HPQ [x2 Hx1'] Hn1 n2 x3 [x4 Hx3] ?; simpl in *.
rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
eapply HPQ; auto. exists (x2 x4); by rewrite assoc.
Qed.
Next Obligation. intros M P Q [|n1] [|n2] x; auto with lia. Qed.
Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
Definition uPred_impl {M} := unseal uPred_impl_aux M.
Definition uPred_impl_eq :
......@@ -71,14 +70,9 @@ Definition uPred_internal_eq_eq:
Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
{| uPred_holds n x := x1 x2, x {n} x1 x2 P n x1 Q n x2 |}.
Next Obligation.
intros M P Q n x y (x1&x2&Hx&?&?) [z Hy].
intros M P Q n1 n2 x y (x1&x2&Hx&?&?) [z Hy] Hn.
exists x1, (x2 z); split_and?; eauto using uPred_mono, cmra_includedN_l.
by rewrite Hy Hx assoc.
Qed.
Next Obligation.
intros M P Q n1 n2 x (x1&x2&Hx&?&?) ?.
exists x1, x2; ofe_subst; split_and!;
eauto using dist_le, uPred_closed, cmra_validN_op_l, cmra_validN_op_r.
eapply dist_le, Hn. by rewrite Hy Hx assoc.
Qed.
Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
Definition uPred_sep {M} := unseal uPred_sep_aux M.
......@@ -88,11 +82,10 @@ Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
{| uPred_holds n x := n' x',
n' n {n'} (x x') P n' x' Q n' (x x') |}.
Next Obligation.
intros M P Q n x1 x1' HPQ ? n3 x3 ???; simpl in *.
apply uPred_mono with (x1 x3);
intros M P Q n1 n1' x1 x1' HPQ ? Hn n3 x3 ???; simpl in *.
eapply uPred_mono with n3 (x1 x3);
eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
Qed.
Next Obligation. naive_solver. Qed.
Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
Definition uPred_wand {M} := unseal uPred_wand_aux M.
Definition uPred_wand_eq :
......@@ -103,7 +96,7 @@ Definition uPred_wand_eq :
because Iris is afine. The following is easier to work with. *)
Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M :=
{| uPred_holds n x := P n ε |}.
Solve Obligations with naive_solver eauto using uPred_closed, ucmra_unit_validN.
Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN.
Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed.
Definition uPred_plainly {M} := unseal uPred_plainly_aux M.
Definition uPred_plainly_eq :
......@@ -114,7 +107,6 @@ Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M :=
Next Obligation.
intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
Qed.
Next Obligation. naive_solver eauto using uPred_closed, @cmra_core_validN. Qed.
Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed.
Definition uPred_persistently {M} := unseal uPred_persistently_aux M.
Definition uPred_persistently_eq :
......@@ -123,10 +115,7 @@ Definition uPred_persistently_eq :
Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
{| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation.
intros M P [|n] x1 x2; eauto using uPred_mono, cmra_includedN_S.
Qed.
Next Obligation.
intros M P [|n1] [|n2] x; eauto using uPred_closed, cmra_validN_S with lia.
intros M P [|n1] [|n2] x1 x2; eauto using uPred_mono, cmra_includedN_S with lia.
Qed.
Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
Definition uPred_later {M} := unseal uPred_later_aux M.
......@@ -136,10 +125,9 @@ Definition uPred_later_eq :
Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
{| uPred_holds n x := a {n} x |}.
Next Obligation.
intros M a n x1 x [a' Hx1] [x2 ->].
exists (a' x2). by rewrite (assoc op) Hx1.
intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] Hn. eapply cmra_includedN_le=>//.
exists (a' x2). by rewrite Hx(assoc op) Hx1.
Qed.
Next Obligation. naive_solver eauto using cmra_includedN_le. Qed.
Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
Definition uPred_ownM {M} := unseal uPred_ownM_aux M.
Definition uPred_ownM_eq :
......@@ -157,13 +145,12 @@ Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
{| uPred_holds n x := k yf,
k n {k} (x yf) x', {k} (x' yf) Q k x' |}.
Next Obligation.
intros M Q n x1 x2 HQ [x3 Hx] k yf Hk.
intros M Q n1 n2 x1 x2 HQ [x3 Hx] Hn k yf Hk.
rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
destruct (HQ k (x3 yf)) as (x'&?&?); [auto|by rewrite assoc|].
exists (x' x3); split; first by rewrite -assoc.
apply uPred_mono with x'; eauto using cmra_includedN_l.
eauto using uPred_mono, cmra_includedN_l.
Qed.
Next Obligation. naive_solver. Qed.
Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed.
Definition uPred_bupd {M} := unseal uPred_bupd_aux M.
Definition uPred_bupd_eq : @uPred_bupd = @uPred_bupd_def := seal_eq uPred_bupd_aux.
......@@ -380,7 +367,7 @@ Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.
Lemma impl_intro_r P Q R : (P Q R) P Q R.
Proof.
unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ;
naive_solver eauto using uPred_mono, uPred_closed, cmra_included_includedN.
naive_solver eauto using uPred_mono, cmra_included_includedN.
Qed.
Lemma impl_elim P Q R : (P Q R) (P Q) P R.
Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.
......@@ -432,7 +419,7 @@ Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R.
Proof.
unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
exists x, x'; split_and?; auto.
eapply uPred_closed with n; eauto using cmra_validN_op_l.
eapply uPred_mono with n x; eauto using cmra_validN_op_l.
Qed.
Lemma wand_elim_l' P Q R : (P Q - R) P Q R.
Proof.
......@@ -486,14 +473,14 @@ Qed.
Lemma persistently_impl_plainly P Q : ( P Q) ( P Q).
Proof.
unseal; split=> /= n x ? HPQ n' x' ????.
eapply uPred_mono with (core x), cmra_included_includedN; auto.
eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN].
apply (HPQ n' x); eauto using cmra_validN_le.
Qed.
Lemma plainly_impl_plainly P Q : ( P Q) ( P Q).
Proof.
unseal; split=> /= n x ? HPQ n' x' ????.
eapply uPred_mono with ε, cmra_included_includedN; auto.
eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN].
apply (HPQ n' x); eauto using cmra_validN_le.
Qed.
......@@ -505,7 +492,7 @@ Qed.
Lemma löb P : ( P P) P.
Proof.
unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|].
apply HP, IH, uPred_closed with (S n); eauto using cmra_validN_S.
apply HP, IH, uPred_mono with (S n) x; eauto using cmra_validN_S.
Qed.
Lemma later_forall_2 {A} (Φ : A uPred M) : ( a, Φ a) a, Φ a.
Proof. unseal; by split=> -[|n] x. Qed.
......@@ -526,8 +513,7 @@ Qed.
Lemma later_false_excluded_middle P : P False ( False P).
Proof.
unseal; split=> -[|n] x ? /= HP; [by left|right].
intros [|n'] x' ????; [|done].
eauto using uPred_closed, uPred_mono, cmra_included_includedN.
intros [|n'] x' ????; eauto using uPred_mono, cmra_included_includedN.
Qed.
Lemma persistently_later P : P P.
Proof. by unseal. Qed.
......@@ -577,7 +563,7 @@ Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.
Lemma bupd_intro P : P == P.
Proof.
unseal. split=> n x ? HP k yf ?; exists x; split; first done.
apply uPred_closed with n; eauto using cmra_validN_op_l.
apply uPred_mono with n x; eauto using cmra_validN_op_l.
Qed.
Lemma bupd_mono P Q : (P Q) (|==> P) == Q.
Proof.
......@@ -593,8 +579,7 @@ Proof.
destruct (HP k (x2 yf)) as (x'&?&?); eauto.
{ by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
exists (x' x2); split; first by rewrite -assoc.
exists x', x2; split_and?; auto.
apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r.
exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r.
Qed.
Lemma bupd_ownM_updateP x (Φ : M Prop) :
x ~~>: Φ uPred_ownM x == y, ⌜Φ y uPred_ownM y.
......
......@@ -9,9 +9,8 @@ Set Default Proof Using "Type".
Record uPred (M : ucmraT) : Type := IProp {
uPred_holds :> nat M Prop;
uPred_mono n x1 x2 : uPred_holds n x1 x1 {n} x2 uPred_holds n x2;
uPred_closed n1 n2 x : uPred_holds n1 x n2 n1 uPred_holds n2 x
uPred_mono n1 n2 x1 x2 :
uPred_holds n1 x1 x1 {n1} x2 n2 n1 uPred_holds n2 x2
}.
Arguments uPred_holds {_} _ _ _ : simpl never.
Add Printing Constructor uPred.
......@@ -81,18 +80,15 @@ Section cofe.
Program Definition uPred_compl : Compl uPredC := λ c,
{| uPred_holds n x := n', n' n {n'}x c n' n' x |}.
Next Obligation.
move=> /= c n x1 x2 Hx1 Hx12 n' Hn'n Hv.
eapply uPred_mono. by eapply Hx1, cmra_validN_includedN, cmra_includedN_le.
by eapply cmra_includedN_le.
Qed.
Next Obligation.
move=> /= c n1 n2 x Hc Hn12 n3 Hn23 Hv. apply Hc. lia. done.
move=> /= c n1 n2 x1 x2 HP Hx12 Hn12 n3 Hn23 Hv. eapply uPred_mono.
eapply HP, cmra_validN_includedN, cmra_includedN_le=>//; lia.
eapply cmra_includedN_le=>//; lia. done.
Qed.
Global Program Instance uPred_cofe : Cofe uPredC := {| compl := uPred_compl |}.
Next Obligation.
intros n c; split=>i x Hin Hv.
etrans; [|by symmetry; apply (chain_cauchy c i n)]. split=>H; [by apply H|].
repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_closed.
repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_mono.
Qed.
End cofe.
Arguments uPredC : clear implicits.
......@@ -107,8 +103,7 @@ Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed.
Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x :
P {n2} Q n2 n1 {n2} x Q n1 x P n2 x.
Proof.
intros [Hne] ???. eapply Hne; try done.
eapply uPred_closed; eauto using cmra_validN_le.
intros [Hne] ???. eapply Hne; try done. eauto using uPred_mono, cmra_validN_le.
Qed.
(** functor *)
......@@ -116,7 +111,6 @@ Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1)
`{!CmraMorphism f} (P : uPred M1) :
uPred M2 := {| uPred_holds n x := P n (f x) |}.
Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed.
Next Obligation. naive_solver eauto using uPred_closed, cmra_morphism_validN. Qed.
Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1)
`{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f).
......@@ -174,7 +168,7 @@ Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
Hint Extern 0 (uPred_entails _ _) => reflexivity.
Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M).
Hint Resolve uPred_mono uPred_closed : uPred_def.
Hint Resolve uPred_mono : uPred_def.
(** Notations *)
Notation "P ⊢ Q" := (uPred_entails P%I Q%I)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment