Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
d7766e5d
Commit
d7766e5d
authored
May 31, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Some properties about set disjointness.
parent
e4c30558
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
0 deletions
+19
-0
prelude/collections.v
prelude/collections.v
+19
-0
No files found.
prelude/collections.v
View file @
d7766e5d
...
...
@@ -41,6 +41,25 @@ Section simple_collection.
Lemma
elem_of_disjoint
X
Y
:
X
⊥
Y
↔
∀
x
,
x
∈
X
→
x
∈
Y
→
False
.
Proof
.
done
.
Qed
.
Global
Instance
disjoint_sym
:
Symmetric
(@
disjoint
C
_
).
Proof
.
intros
??.
rewrite
!
elem_of_disjoint
;
naive_solver
.
Qed
.
Lemma
disjoint_empty_l
Y
:
∅
⊥
Y
.
Proof
.
rewrite
elem_of_disjoint
;
intros
x
;
by
rewrite
elem_of_empty
.
Qed
.
Lemma
disjoint_empty_r
X
:
X
⊥
∅
.
Proof
.
rewrite
(
symmetry_iff
_
)
;
apply
disjoint_empty_l
.
Qed
.
Lemma
disjoint_singleton_l
x
Y
:
{[
x
]}
⊥
Y
↔
x
∉
Y
.
Proof
.
rewrite
elem_of_disjoint
;
setoid_rewrite
elem_of_singleton
;
naive_solver
.
Qed
.
Lemma
disjoint_singleton_r
y
X
:
X
⊥
{[
y
]}
↔
y
∉
X
.
Proof
.
rewrite
(
symmetry_iff
(
⊥
)).
apply
disjoint_singleton_l
.
Qed
.
Lemma
disjoint_union_l
X1
X2
Y
:
X1
∪
X2
⊥
Y
↔
X1
⊥
Y
∧
X2
⊥
Y
.
Proof
.
rewrite
!
elem_of_disjoint
;
setoid_rewrite
elem_of_union
;
naive_solver
.
Qed
.
Lemma
disjoint_union_r
X
Y1
Y2
:
X
⊥
Y1
∪
Y2
↔
X
⊥
Y1
∧
X
⊥
Y2
.
Proof
.
rewrite
!(
symmetry_iff
(
⊥
)
X
).
apply
disjoint_union_l
.
Qed
.
Lemma
collection_positive_l
X
Y
:
X
∪
Y
≡
∅
→
X
≡
∅
.
Proof
.
rewrite
!
elem_of_equiv_empty
.
setoid_rewrite
elem_of_union
.
naive_solver
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment