Commit c9707f98 authored by Ralf Jung's avatar Ralf Jung Committed by Robbert Krebbers

generalize savedProp to let the user control the position of the type-level later

parent 60c28208
......@@ -5,16 +5,17 @@ Set Default Proof Using "Type".
Import uPred.
Class savedPropG (Σ : gFunctors) (F : cFunctor) :=
saved_prop_inG :> inG Σ (agreeR (laterC (F (iPreProp Σ)))).
Definition savedPropΣ (F : cFunctor) : gFunctors :=
#[ GFunctor (agreeRF ( F)) ].
saved_prop_inG :> inG Σ (agreeR (F (iPreProp Σ))).
Definition savedPropΣ (F : cFunctor) `{!cFunctorContractive F} : gFunctors :=
#[ GFunctor (agreeRF F) ].
Instance subG_savedPropΣ {Σ F} : subG (savedPropΣ F) Σ savedPropG Σ F.
Instance subG_savedPropΣ {Σ F} `{!cFunctorContractive F} :
subG (savedPropΣ F) Σ savedPropG Σ F.
Proof. solve_inG. Qed.
Definition saved_prop_own `{savedPropG Σ F}
(γ : gname) (x : F (iProp Σ)) : iProp Σ :=
own γ (to_agree $ Next (cFunctor_map F (iProp_fold, iProp_unfold) x)).
own γ (to_agree $ (cFunctor_map F (iProp_fold, iProp_unfold) x)).
Typeclasses Opaque saved_prop_own.
Instance: Params (@saved_prop_own) 3.
......@@ -34,15 +35,15 @@ Section saved_prop.
Proof. by apply own_alloc. Qed.
Lemma saved_prop_agree γ x y :
saved_prop_own γ x - saved_prop_own γ y - (x y).
saved_prop_own γ x - saved_prop_own γ y - x y.
Proof.
apply wand_intro_r.
rewrite -own_op own_valid agree_validI agree_equivI later_equivI.
rewrite -own_op own_valid agree_validI agree_equivI.
set (G1 := cFunctor_map F (iProp_fold, iProp_unfold)).
set (G2 := cFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)).
assert ( z, G2 (G1 z) z) as help.
{ intros z. rewrite /G1 /G2 -cFunctor_compose -{2}[z]cFunctor_id.
apply (ne_proper (cFunctor_map F)); split=>?; apply iProp_fold_unfold. }
rewrite -{2}[x]help -{2}[y]help. apply later_mono, f_equiv, _.
rewrite -{2}[x]help -{2}[y]help. apply f_equiv, _.
Qed.
End saved_prop.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment