Commit b2ba69ee authored by Robbert Krebbers's avatar Robbert Krebbers

Prove that included on frac corresponds to the order on Qp.

Thanks to Aleš Bizjak.
parent 1270ae08
Pipeline #2744 passed with stage
in 9 minutes and 28 seconds
......@@ -10,6 +10,17 @@ Instance frac_valid : Valid frac := λ x, (x ≤ 1)%Qc.
Instance frac_pcore : PCore frac := λ _, None.
Instance frac_op : Op frac := λ x y, (x + y)%Qp.
Lemma frac_included (x y : frac) : x y (x < y)%Qc.
Proof.
split.
- intros [z ->%leibniz_equiv]; simpl.
rewrite -{1}(Qcplus_0_r x). apply Qcplus_lt_mono_l, Qp_prf.
- intros Hlt%Qclt_minus_iff. exists (mk_Qp (y - x) Hlt). apply Qp_eq; simpl.
by rewrite (Qcplus_comm y) Qcplus_assoc Qcplus_opp_r Qcplus_0_l.
Qed.
Corollary frac_included_weak (x y : frac) : x y (x y)%Qc.
Proof. intros ?%frac_included. auto using Qclt_le_weak. Qed.
Definition frac_ra_mixin : RAMixin frac.
Proof.
split; try apply _; try done.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment