Commit a52c62d1 authored by Robbert Krebbers's avatar Robbert Krebbers

CMRA functor (without unit) on auth.

parent 40b18e24
Pipeline #2553 passed with stage
in 3 minutes and 57 seconds
......@@ -241,6 +241,28 @@ Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
Lemma authC_map_ne A B n : Proper (dist n ==> dist n) (@authC_map A B).
Proof. intros f f' Hf [[[a|]|] b]; repeat constructor; apply Hf. Qed.
Program Definition authRF (F : urFunctor) : rFunctor := {|
rFunctor_car A B := authR (urFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
|}.
Next Obligation.
by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
Qed.
Next Obligation.
intros F A B x. rewrite /= -{2}(auth_map_id x).
apply auth_map_ext=>y; apply urFunctor_id.
Qed.
Next Obligation.
intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
apply auth_map_ext=>y; apply urFunctor_compose.
Qed.
Instance authRF_contractive F :
urFunctorContractive F rFunctorContractive (authRF F).
Proof.
by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
Qed.
Program Definition authURF (F : urFunctor) : urFunctor := {|
urFunctor_car A B := authUR (urFunctor_car F A B);
urFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment