Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
a45a9d43
Commit
a45a9d43
authored
Mar 17, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
alternative definition of weakestpre matching the one on paper
parent
fdd87a4f
Pipeline
#364
failed with stage
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
5 additions
and
2 deletions
+5
-2
_CoqProject
_CoqProject
+1
-0
algebra/cofe.v
algebra/cofe.v
+3
-1
program_logic/lifting.v
program_logic/lifting.v
+1
-1
No files found.
_CoqProject
View file @
a45a9d43
...
...
@@ -64,6 +64,7 @@ program_logic/viewshifts.v
program_logic/wsat.v
program_logic/ownership.v
program_logic/weakestpre.v
program_logic/weakestpre_fix.v
program_logic/pviewshifts.v
program_logic/resources.v
program_logic/hoare.v
...
...
algebra/cofe.v
View file @
a45a9d43
...
...
@@ -252,9 +252,11 @@ Infix "-n>" := cofe_mor (at level 45, right associativity).
Instance
cofe_more_inhabited
{
A
B
:
cofeT
}
`
{
Inhabited
B
}
:
Inhabited
(
A
-
n
>
B
)
:
=
populate
(
CofeMor
(
λ
_
,
inhabitant
)).
(** Identity and composition *)
(** Identity and composition
and constant function
*)
Definition
cid
{
A
}
:
A
-
n
>
A
:
=
CofeMor
id
.
Instance
:
Params
(@
cid
)
1
.
Definition
cconst
{
A
B
:
cofeT
}
(
x
:
B
)
:
A
-
n
>
B
:
=
CofeMor
(
const
x
).
Instance
:
Params
(@
cconst
)
2
.
Definition
ccompose
{
A
B
C
}
(
f
:
B
-
n
>
C
)
(
g
:
A
-
n
>
B
)
:
A
-
n
>
C
:
=
CofeMor
(
f
∘
g
).
...
...
program_logic/lifting.v
View file @
a45a9d43
...
...
@@ -15,7 +15,7 @@ Implicit Types σ : state Λ.
Implicit
Types
P
Q
:
iProp
Λ
Σ
.
Implicit
Types
Φ
:
val
Λ
→
iProp
Λ
Σ
.
Notation
wp_fork
ef
:
=
(
default
True
ef
(
flip
(
wp
⊤
)
(
λ
_
,
■
True
)))%
I
.
Notation
wp_fork
ef
:
=
(
default
True
ef
(
flip
(
wp
⊤
)
(
λ
_
,
True
)))%
I
.
Lemma
wp_lift_step
E1
E2
(
φ
:
expr
Λ
→
state
Λ
→
option
(
expr
Λ
)
→
Prop
)
Φ
e1
σ
1
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment