Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
a3dfa40e
Commit
a3dfa40e
authored
Nov 21, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More properties and set_solver for filter.
parent
8fd8da22
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
49 additions
and
6 deletions
+49
-6
base_logic/big_op.v
base_logic/big_op.v
+13
-0
prelude/fin_collections.v
prelude/fin_collections.v
+36
-6
No files found.
base_logic/big_op.v
View file @
a3dfa40e
...
...
@@ -472,6 +472,19 @@ Section gset.
Lemma
big_sepS_singleton
Φ
x
:
([
∗
set
]
y
∈
{[
x
]},
Φ
y
)
⊣
⊢
Φ
x
.
Proof
.
apply
:
big_opS_singleton
.
Qed
.
Lemma
big_sepS_filter
(
P
:
A
→
Prop
)
`
{
∀
x
,
Decision
(
P
x
)}
Φ
X
:
([
∗
set
]
y
∈
filter
P
X
,
Φ
y
)
⊣
⊢
([
∗
set
]
y
∈
X
,
■
P
y
→
Φ
y
).
Proof
.
induction
X
as
[|
x
X
?
IH
]
using
collection_ind_L
.
{
by
rewrite
filter_empty_L
!
big_sepS_empty
.
}
destruct
(
decide
(
P
x
)).
-
rewrite
filter_union_L
filter_singleton_L
//.
rewrite
!
big_sepS_insert
//
;
last
set_solver
.
by
rewrite
IH
pure_True
//
left_id
.
-
rewrite
filter_union_L
filter_singleton_not_L
//
left_id_L
.
by
rewrite
!
big_sepS_insert
//
IH
pure_False
//
False_impl
left_id
.
Qed
.
Lemma
big_sepS_sepS
Φ
Ψ
X
:
([
∗
set
]
y
∈
X
,
Φ
y
∗
Ψ
y
)
⊣
⊢
([
∗
set
]
y
∈
X
,
Φ
y
)
∗
([
∗
set
]
y
∈
X
,
Ψ
y
).
Proof
.
apply
:
big_opS_opS
.
Qed
.
...
...
prelude/fin_collections.v
View file @
a3dfa40e
...
...
@@ -14,6 +14,7 @@ Definition collection_fold `{Elements A C} {B}
Instance
collection_filter
`
{
Elements
A
C
,
Empty
C
,
Singleton
A
C
,
Union
C
}
:
Filter
A
C
:
=
λ
P
_
X
,
of_list
(
filter
P
(
elements
X
)).
Typeclasses
Opaque
collection_filter
.
Section
fin_collection
.
Context
`
{
FinCollection
A
C
}.
...
...
@@ -211,12 +212,41 @@ Lemma minimal_exists_L R `{!LeibnizEquiv C, !Transitive R,
Proof
.
unfold_leibniz
.
apply
(
minimal_exists
R
).
Qed
.
(** * Filter *)
Lemma
elem_of_filter
(
P
:
A
→
Prop
)
`
{!
∀
x
,
Decision
(
P
x
)}
X
x
:
x
∈
filter
P
X
↔
P
x
∧
x
∈
X
.
Proof
.
Section
filter
.
Context
(
P
:
A
→
Prop
)
`
{!
∀
x
,
Decision
(
P
x
)}.
Lemma
elem_of_filter
X
x
:
x
∈
filter
P
X
↔
P
x
∧
x
∈
X
.
Proof
.
unfold
filter
,
collection_filter
.
by
rewrite
elem_of_of_list
,
elem_of_list_filter
,
elem_of_elements
.
Qed
.
Qed
.
Global
Instance
set_unfold_filter
X
Q
:
SetUnfold
(
x
∈
X
)
Q
→
SetUnfold
(
x
∈
filter
P
X
)
(
P
x
∧
Q
).
Proof
.
intros
??
;
constructor
.
by
rewrite
elem_of_filter
,
(
set_unfold
(
x
∈
X
)
Q
).
Qed
.
Lemma
filter_empty
:
filter
P
(
∅
:
C
)
≡
∅
.
Proof
.
set_solver
.
Qed
.
Lemma
filter_union
X
Y
:
filter
P
(
X
∪
Y
)
≡
filter
P
X
∪
filter
P
Y
.
Proof
.
set_solver
.
Qed
.
Lemma
filter_singleton
x
:
P
x
→
filter
P
({[
x
]}
:
C
)
≡
{[
x
]}.
Proof
.
set_solver
.
Qed
.
Lemma
filter_singleton_not
x
:
¬
P
x
→
filter
P
({[
x
]}
:
C
)
≡
∅
.
Proof
.
set_solver
.
Qed
.
Section
leibniz_equiv
.
Context
`
{!
LeibnizEquiv
C
}.
Lemma
filter_empty_L
:
filter
P
(
∅
:
C
)
=
∅
.
Proof
.
set_solver
.
Qed
.
Lemma
filter_union_L
X
Y
:
filter
P
(
X
∪
Y
)
=
filter
P
X
∪
filter
P
Y
.
Proof
.
set_solver
.
Qed
.
Lemma
filter_singleton_L
x
:
P
x
→
filter
P
({[
x
]}
:
C
)
=
{[
x
]}.
Proof
.
set_solver
.
Qed
.
Lemma
filter_singleton_not_L
x
:
¬
P
x
→
filter
P
({[
x
]}
:
C
)
=
∅
.
Proof
.
set_solver
.
Qed
.
End
leibniz_equiv
.
End
filter
.
(** * Decision procedures *)
Global
Instance
set_Forall_dec
`
(
P
:
A
→
Prop
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment