Commit 92326ed3 authored by Robbert Krebbers's avatar Robbert Krebbers

uPred_equiv is reflexive.

parent 88e0b05b
......@@ -521,6 +521,9 @@ Proof.
* by rewrite -(left_id True%I uPred_and (_ _)%I) impl_elim_r.
* by apply impl_intro_l; rewrite left_id.
Lemma iff_refl Q P : Q (P P).
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
Lemma or_and_l P Q R : (P Q R)%I ((P Q) (P R))%I.
apply (anti_symm ()); first auto.
......@@ -832,7 +835,6 @@ Proof. done. Qed.
Lemma prod_validI {A B : cmraT} (x : A * B) :
( x)%I ( x.1 x.2 : uPred M)%I.
Proof. done. Qed.
Print later.
Lemma later_equivI {A : cofeT} (x y : later A) :
(x y)%I ( (later_car x later_car y) : uPred M)%I.
Proof. done. Qed.
......@@ -1001,5 +1003,5 @@ Hint Resolve and_intro and_elim_l' and_elim_r' : I.
Hint Resolve always_mono : I.
Hint Resolve sep_elim_l' sep_elim_r' sep_mono : I.
Hint Immediate True_intro False_elim : I.
Hint Immediate iff_refl : I.
End uPred.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment