Commit 817a80f9 authored by Ralf Jung's avatar Ralf Jung

state the theorem we want to prove

parent e7c2ac37
......@@ -123,5 +123,29 @@ Section proof.
( γ (P Q : iProp) i, barrier_ctx γ l P sts.in_states StsI sts γ (i_states i) {[ Change i ]}
saved_prop_own SpI i Q (Q - R))%I.
Lemma newchan_spec (P : iProp) (Q : val iProp) :
( l, recv l P send l P - Q (LocV l)) wp coPset_all (newchan '()) Q.
Proof.
Abort.
Lemma signal_spec l P (Q : val iProp) :
(send l P P Q '()) wp coPset_all (signal (LocV l)) Q.
Proof.
Abort.
Lemma wait_spec l P (Q : val iProp) :
(recv l P (P - Q '())) wp coPset_all (wait (LocV l)) Q.
Proof.
Abort.
Lemma split_spec l P1 P2 Q :
(recv l (P1 P2) (recv l P1 recv l P2 - Q '())) wp coPset_all Skip Q.
Proof.
Abort.
Lemma recv_strengthen l P1 P2 :
(P1 - P2) (recv l P1 - recv l P2).
Proof.
Abort.
End proof.
......@@ -20,7 +20,8 @@ Coercion of_val : val >-> expr.
pretty printing. *)
Notation "' l" := (Lit l%Z) (at level 8, format "' l").
Notation "' l" := (LitV l%Z) (at level 8, format "' l").
Notation "()" := LitUnit (at level 0) : lang_scope.
Notation "'()" := (Lit LitUnit) (at level 0).
Notation "'()" := (LitV LitUnit) (at level 0).
Notation "! e" := (Load e%L) (at level 10, right associativity) : lang_scope.
Notation "'ref' e" := (Alloc e%L)
(at level 30, right associativity) : lang_scope.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment