Commit 7fc5808c authored by Ralf Jung's avatar Ralf Jung

complete one_shot

parent a26a3367
Pipeline #320 passed with stage
...@@ -2,6 +2,8 @@ From iris.algebra Require Export cmra. ...@@ -2,6 +2,8 @@ From iris.algebra Require Export cmra.
From iris.algebra Require Import upred. From iris.algebra Require Import upred.
Local Arguments validN _ _ _ !_ /. Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _ !_ /. Local Arguments valid _ _ !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _ !_ /.
(* TODO: Really, we should have sums, and then this should be just "excl unit + A". *) (* TODO: Really, we should have sums, and then this should be just "excl unit + A". *)
Inductive one_shot {A : Type} := Inductive one_shot {A : Type} :=
...@@ -92,3 +94,198 @@ End cofe. ...@@ -92,3 +94,198 @@ End cofe.
Arguments one_shotC : clear implicits. Arguments one_shotC : clear implicits.
(* Functor on COFEs *)
Definition one_shot_map {A B} (f : A B) (x : one_shot A) : one_shot B :=
match x with
| OneShotPending => OneShotPending
| Shot a => Shot (f a)
| OneShotUnit => OneShotUnit
| OneShotBot => OneShotBot
end.
Instance: Params (@one_shot_map) 2.
Lemma one_shot_map_id {A} (x : one_shot A) : one_shot_map id x = x.
Proof. by destruct x. Qed.
Lemma one_shot_map_compose {A B C} (f : A B) (g : B C) (x : one_shot A) :
one_shot_map (g f) x = one_shot_map g (one_shot_map f x).
Proof. by destruct x. Qed.
Lemma one_shot_map_ext {A B : cofeT} (f g : A B) x :
( x, f x g x) one_shot_map f x one_shot_map g x.
Proof. by destruct x; constructor. Qed.
Instance one_shot_map_cmra_ne {A B : cofeT} n :
Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@one_shot_map A B).
Proof. intros f f' Hf; destruct 1; constructor; by try apply Hf. Qed.
Definition one_shotC_map {A B} (f : A -n> B) : one_shotC A -n> one_shotC B :=
CofeMor (one_shot_map f).
Instance one_shotC_map_ne A B n : Proper (dist n ==> dist n) (@one_shotC_map A B).
Proof. intros f f' Hf []; constructor; by try apply Hf. Qed.
Section cmra.
Context {A : cmraT}.
Implicit Types a b : A.
Implicit Types x y : one_shot A.
(* CMRA *)
Instance one_shot_valid : Valid (one_shot A) := λ x,
match x with
| OneShotPending => True
| Shot a => a
| OneShotUnit => True
| OneShotBot => False
end.
Instance one_shot_validN : ValidN (one_shot A) := λ n x,
match x with
| OneShotPending => True
| Shot a => {n} a
| OneShotUnit => True
| OneShotBot => False
end.
Global Instance one_shot_empty : Empty (one_shot A) := OneShotUnit.
Instance one_shot_core : Core (one_shot A) := λ x,
match x with
| Shot a => Shot (core a)
| OneShotBot => OneShotBot
| _ =>
end.
Instance one_shot_op : Op (one_shot A) := λ x y,
match x, y with
| Shot a, Shot b => Shot (a b)
| Shot a, OneShotUnit | OneShotUnit, Shot a => Shot a
| OneShotUnit, OneShotPending | OneShotPending, OneShotUnit => OneShotPending
| OneShotUnit, OneShotUnit => OneShotUnit
| _, _ => OneShotBot
end.
Lemma Shot_op a b : Shot a Shot b = Shot (a b).
Proof. done. Qed.
Lemma Shot_incl a b : Shot a Shot b a b.
Proof.
split; intros [c H].
- destruct c; inversion_clear H; first by eexists.
by rewrite (_ : b a).
- exists (Shot c). constructor. done.
Qed.
Definition one_shot_cmra_mixin : CMRAMixin (one_shot A).
Proof.
split.
- intros n []; destruct 1; constructor; by cofe_subst.
- intros ? [|a| |] [|b| |] H; inversion_clear H; constructor; by f_equiv.
- intros ? [|a| |] [|b| |] H; inversion_clear H; cofe_subst; done.
- intros [|a| |]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
- intros n [|a| |]; simpl; auto using cmra_validN_S.
- intros [|a1| |] [|a2| |] [|a3| |]; constructor; by rewrite ?assoc.
- intros [|a1| |] [|a2| |]; constructor; by rewrite 1?comm.
- intros [|a| |]; constructor; []. exact: cmra_core_l.
- intros [|a| |]; constructor; []. exact: cmra_core_idemp.
- intros [|a1| |] [|a2| |]; simpl;
try solve [ by exists OneShotUnit; constructor
| by exists OneShotBot; constructor
| by intros [[|a3| |] H]; inversion_clear H ].
+ intros H%Shot_incl. apply Shot_incl, cmra_core_preserving. done.
+ intros _. exists (Shot (core a2)). by constructor.
- intros n [|a1| |] [|a2| |]; simpl; eauto using cmra_validN_op_l; done.
- intros n [|a| |] y1 y2 Hx Hx'; last 2 first.
+ by exists (, ); destruct y1, y2; inversion_clear Hx'.
+ by exists (OneShotBot, OneShotBot); destruct y1, y2; inversion_clear Hx'.
+ destruct y1, y2; try (exfalso; by inversion_clear Hx').
* by exists (OneShotPending, OneShotUnit).
* by exists (OneShotUnit, OneShotPending).
+ destruct y1 as [|b1 | |], y2 as [|b2| |]; try (exfalso; by inversion_clear Hx').
* apply (inj Shot) in Hx'.
destruct (cmra_extend n a b1 b2) as ([z1 z2]&?&?&?); auto.
exists (Shot z1, Shot z2). by repeat constructor.
* exists (Shot a, ). inversion_clear Hx'. by repeat constructor.
* exists (, Shot a). inversion_clear Hx'. by repeat constructor.
Qed.
Canonical Structure one_shotR : cmraT := CMRAT one_shot_cofe_mixin one_shot_cmra_mixin.
Global Instance one_shot_cmra_unit : CMRAUnit one_shotR.
Proof. split. done. by intros []. apply _. Qed.
Global Instance one_shot_cmra_discrete : CMRADiscrete A CMRADiscrete one_shotR.
Proof.
split; first apply _.
intros [|a| |]; simpl; auto using cmra_discrete_valid.
Qed.
Lemma one_shot_validN_inv_l n y : {n} (OneShotPending y) y = .
Proof.
destruct y as [|b| |]; [done| |done|done]. destruct 1.
Qed.
Lemma one_shot_valid_inv_l y : (OneShotPending y) y = .
Proof. intros. by apply one_shot_validN_inv_l with 0, cmra_valid_validN. Qed.
Lemma one_shot_bot_largest y : y OneShotBot.
Proof.
destruct y; exists OneShotBot; constructor.
Qed.
(** Internalized properties *)
Lemma one_shot_equivI {M} (x y : one_shot A) :
(x y) (match x, y with
| OneShotPending, OneShotPending => True
| Shot a, Shot b => a b
| OneShotUnit, OneShotUnit => True
| OneShotBot, OneShotBot => True
| _, _ => False
end : uPred M).
Proof.
uPred.unseal; do 2 split; first by destruct 1.
by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma one_shot_validI {M} (x : one_shot A) :
( x) (match x with
| Shot a => a
| OneShotBot => False
| _ => True
end : uPred M).
Proof. uPred.unseal. by destruct x. Qed.
(** Updates *)
Lemma one_shot_update_shoot (a : A) : a OneShotPending ~~> Shot a.
Proof.
move=> ? n y /one_shot_validN_inv_l ->. by apply cmra_valid_validN.
Qed.
Lemma one_shot_update (a1 a2 : A) : a1 ~~> a2 Shot a1 ~~> Shot a2.
Proof.
intros Ha n [|b| |] ?; simpl; auto.
apply cmra_validN_op_l with (core a1), Ha. by rewrite cmra_core_r.
Qed.
End cmra.
Arguments one_shotR : clear implicits.
(* Functor *)
Instance one_shot_map_cmra_monotone {A B : cmraT} (f : A B) :
CMRAMonotone f CMRAMonotone (one_shot_map f).
Proof.
split; try apply _.
- intros n [|a| |]; simpl; auto using validN_preserving.
- intros [|a1| |] [|a2| |] [[|a3| |] Hx];
inversion Hx; setoid_subst; try apply cmra_unit_least;
try apply one_shot_bot_largest; auto; [].
destruct (included_preserving f a1 (a1 a3)) as [b ?].
{ by apply cmra_included_l. }
by exists (Shot b); constructor.
Qed.
Program Definition one_shotRF (F : rFunctor) : rFunctor := {|
rFunctor_car A B := one_shotR (rFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := one_shotC_map (rFunctor_map F fg)
|}.
Next Obligation.
by intros F A1 A2 B1 B2 n f g Hfg; apply one_shotC_map_ne, rFunctor_ne.
Qed.
Next Obligation.
intros F A B x. rewrite /= -{2}(one_shot_map_id x).
apply one_shot_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -one_shot_map_compose.
apply one_shot_map_ext=>y; apply rFunctor_compose.
Qed.
Instance one_shotRF_contractive F :
rFunctorContractive F rFunctorContractive (one_shotRF F).
Proof.
by intros ? A1 A2 B1 B2 n f g Hfg; apply one_shotC_map_ne, rFunctor_contractive.
Qed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment