Commit 7a822edf authored by Robbert Krebbers's avatar Robbert Krebbers

Make pvs_wand_{l,r} consistent with pvs_impl_{l,r}.

parent eab6c6c4
......@@ -117,7 +117,7 @@ Proof.
intros HN. rewrite /newbarrier. wp_seq.
rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj.
apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
rewrite !assoc. apply pvs_wand_r.
rewrite !assoc. rewrite- pvs_wand_r; apply sep_mono_l.
(* The core of this proof: Allocating the STS and the saved prop. *)
eapply sep_elim_True_r; first by eapply (saved_prop_alloc (F:=idCF) _ P).
rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l.
......@@ -201,7 +201,7 @@ Proof.
rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l.
wp_op; first done. intros _. wp_if. rewrite !assoc.
rewrite -always_wand_impl always_elim.
rewrite -{2}pvs_wp. apply pvs_wand_r.
rewrite -{2}pvs_wp. rewrite -pvs_wand_r; apply sep_mono_l.
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i).
rewrite const_equiv // left_id -later_intro.
ecancel_pvs [heap_ctx _; saved_prop_own _ _; Q - _; R - _; sts_ctx _ _ _]%I.
......
......@@ -159,12 +159,10 @@ Lemma pvs_impl_l E1 E2 P Q : (□ (P → Q) ∧ (|={E1,E2}=> P)) ⊢ (|={E1,E2}=
Proof. by rewrite pvs_always_l always_elim impl_elim_l. Qed.
Lemma pvs_impl_r E1 E2 P Q : ((|={E1,E2}=> P) (P Q)) (|={E1,E2}=> Q).
Proof. by rewrite comm pvs_impl_l. Qed.
Lemma pvs_wand_l E1 E2 P Q R :
P (|={E1,E2}=> Q) ((Q - R) P) (|={E1,E2}=> R).
Proof. intros ->. rewrite pvs_frame_l. apply pvs_mono, wand_elim_l. Qed.
Lemma pvs_wand_r E1 E2 P Q R :
P (|={E1,E2}=> Q) (P (Q - R)) (|={E1,E2}=> R).
Proof. rewrite comm. apply pvs_wand_l. Qed.
Lemma pvs_wand_l E1 E2 P Q : ((P - Q) (|={E1,E2}=> P)) (|={E1,E2}=> Q).
Proof. by rewrite pvs_frame_l wand_elim_l. Qed.
Lemma pvs_wand_r E1 E2 P Q : ((|={E1,E2}=> P) (P - Q)) (|={E1,E2}=> Q).
Proof. by rewrite pvs_frame_r wand_elim_r. Qed.
Lemma pvs_sep E P Q:
((|={E}=> P) (|={E}=> Q)) (|={E}=> P Q).
Proof. rewrite pvs_frame_r pvs_frame_l pvs_trans //. set_solver. Qed.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment