Commit 6fbaaf9d authored by Robbert Krebbers's avatar Robbert Krebbers

Merge remote-tracking branch 'mpi/v2.0' into v2.0

parents b52453c9 8513ff5e
......@@ -2,7 +2,7 @@
# This file is distributed under the terms of the BSD license.
import os, glob, string
modules = ["prelude", "modures", "iris"]
modules = ["prelude", "modures", "iris", "barrier"]
Rs = '-Q . ""'
env = DefaultEnvironment(ENV = os.environ,tools=['default', 'Coq'], COQFLAGS=Rs)
......
Require Import Autosubst.Autosubst.
Require Import prelude.option prelude.gmap iris.language.
Require Import prelude.option prelude.gmap iris.language iris.parameter.
Set Bullet Behavior "Strict Subproofs".
......@@ -318,7 +318,7 @@ Proof.
exists K''; by eauto using f_equal, f_equal2, f_equal3, v2e_inj.
intros Hfill Hred Hnval.
Time revert K' Hfill; induction K=>K' /= Hfill;
revert K' Hfill; induction K=>K' /= Hfill;
first (now eexists; reflexivity);
(destruct K'; simpl;
(* The first case is: K' is EmpyCtx. *)
......@@ -408,12 +408,7 @@ Section Language.
Definition ectx_step e1 σ1 e2 σ2 (ef: option expr) :=
exists K e1' e2', e1 = fill K e1' /\ e2 = fill K e2' /\ prim_step e1' σ1 e2' σ2 ef.
Instance heap_lang : Language expr value state := {|
of_val := v2e;
to_val := e2v;
atomic := atomic;
prim_step := ectx_step
|}.
Instance heap_lang : Language expr value state := Build_Language v2e e2v atomic ectx_step.
Proof.
- exact v2v.
- exact e2e.
......@@ -431,7 +426,7 @@ Section Language.
Lemma fill_is_ctx K: is_ctx (fill K).
Proof.
split.
- intros ? [v Hval]. eapply fill_value. eassumption.
- intros ? Hnval. by eapply fill_not_value.
- intros ? ? ? ? ? (K' & e1' & e2' & Heq1 & Heq2 & Hstep).
exists (comp_ctx K K'), e1', e2'. rewrite -!fill_comp Heq1 Heq2.
split; last split; reflexivity || assumption.
......@@ -445,3 +440,9 @@ Section Language.
Qed.
End Language.
(* This is just to demonstrate that we can instantiate IParam. *)
Module IParam.
Definition Σ := IParamConst heap_lang unitRA.
Print Assumptions Σ.
End IParam.
......@@ -14,6 +14,7 @@ Class Language (E V St : Type) := {
prim_step e1 σ1 e2 σ2 ef
is_Some (to_val e2)
}.
Arguments Build_Language {_ _ _} _ _ _ _ {_ _ _ _ _}.
Section language.
Context `{Language E V St}.
......
Require Export modures.cmra iris.language.
Set Bullet Behavior "Strict Subproofs".
Record iParam := IParam {
iexpr : Type;
ival : Type;
istate : Type;
icmra : cofeT cmraT;
ilanguage : Language iexpr ival istate;
icmra : cofeT cmraT;
icmra_empty A : Empty (icmra A);
icmra_empty_spec A : RAIdentity (icmra A);
icmra_empty_timeless A : Timeless ( : icmra A);
......@@ -16,6 +18,7 @@ Record iParam := IParam {
icmra_map (g f) x icmra_map g (icmra_map f x);
icmra_map_mono {A B} (f : A -n> B) : CMRAMonotone (icmra_map f)
}.
Arguments IParam {_ _ _} ilanguage icmra {_ _ _} _ {_ _ _ _}.
Existing Instances ilanguage.
Existing Instances icmra_empty icmra_empty_spec icmra_empty_timeless.
Existing Instances icmra_map_ne icmra_map_mono.
......@@ -26,4 +29,15 @@ Proof.
by intros ?; apply equiv_dist=> n; apply icmra_map_ne=> ?; apply equiv_dist.
Qed.
Canonical Structure istateC Σ := leibnizC (istate Σ).
\ No newline at end of file
Definition IParamConst {iexpr ival istate : Type}
(ilanguage : Language iexpr ival istate)
(icmra : cmraT) {icmra_empty : Empty icmra}
{icmra_empty_spec : RAIdentity icmra} {icmra_empty_timeless: Timeless ( : icmra)}:
iParam.
eapply (IParam ilanguage (fun _ => icmra) (fun _ _ _ => cid)).
Unshelve.
- by intros.
- by intros.
Defined.
Canonical Structure istateC Σ := leibnizC (istate Σ).
......@@ -307,6 +307,9 @@ Section discrete.
End discrete.
Arguments discreteRA _ {_ _ _ _ _ _}.
(** CMRA for the unit type *)
Canonical Structure unitRA : cmraT := discreteRA ().
(** Product *)
Section prod.
Context {A B : cmraT}.
......
......@@ -238,3 +238,21 @@ Ltac solve_included :=
ra_reflection.quote;
apply ra_reflection.flatten_correct, (bool_decide_unpack _);
vm_compute; apply I.
(** An RA for the unit type *)
Instance unit_valid : Valid () := λ x, True.
Instance unit_unit : Unit () := λ x, x.
Instance unit_op : Op () := λ x y, tt.
Instance unit_minus : Minus () := λ x y, tt.
Instance unit_ra : RA ().
Proof.
split; done.
Qed.
Instance unit_empty : Empty () := tt.
Instance unit_empty_ra : RAIdentity().
Proof.
split; done.
Qed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment