Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
80
Issues
80
List
Boards
Labels
Milestones
Merge Requests
12
Merge Requests
12
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
CI / CD Analytics
Repository Analytics
Value Stream Analytics
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
6e9785bf
Commit
6e9785bf
authored
Aug 05, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
we don't need no selfreferential invariant allocation
parent
5739b936
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
84 additions
and
23 deletions
+84
23
program_logic/counter_examples.v
program_logic/counter_examples.v
+84
23
No files found.
program_logic/counter_examples.v
View file @
6e9785bf
...
...
@@ 86,16 +86,41 @@ Section inv.
(* We have invariants *)
Context
(
name
:
Type
)
(
inv
:
name
→
iProp
→
iProp
).
Hypothesis
inv_persistent
:
forall
i
P
,
PersistentP
(
inv
i
P
).
Hypothesis
inv_alloc
_dep
:
forall
(
P
:
name
→
iProp
),
(
∀
i
,
P
i
)
⊢
pvs1
(
∃
i
,
inv
i
(
P
i
)
).
Hypothesis
inv_alloc
:
forall
(
P
:
iProp
),
P
⊢
pvs1
(
∃
i
,
inv
i
P
).
Hypothesis
inv_open
:
forall
i
P
Q
R
,
(
P
★
Q
⊢
pvs0
(
P
★
R
))
→
(
inv
i
P
★
Q
⊢
pvs1
R
).
(* We have tokens for a little "twostate STS" *)
Context
(
start
finished
:
iProp
).
Hypothesis
start_finish
:
start
⊢
pvs0
finished
.
Hypothesis
finish_no_start
:
finished
★
start
⊢
False
.
Hypothesis
finish_persistent
:
PersistentP
finished
.
(* We have tokens for a little "threestate STS": [fresh] > [start n] >
[finish n]. The [auth_*] tokens are in the invariant and assert an exact
state. [fresh] also asserts the exact state; it is owned by threads (i.e.,
there's a token needed to transition to [start].) [started] and [finished]
are *lower bounds*. We don't need "auth_finish" because the state will
never change again, so [finished] is just as good. *)
Context
(
auth_fresh
fresh
:
iProp
).
Context
(
auth_start
started
finished
:
name
→
iProp
).
Hypothesis
fresh_start
:
forall
n
,
auth_fresh
★
fresh
⊢
pvs0
(
auth_start
n
★
started
n
).
Hypotheses
start_finish
:
forall
n
,
auth_start
n
⊢
pvs0
(
finished
n
).
Hypothesis
fresh_not_start
:
forall
n
,
auth_start
n
★
fresh
⊢
False
.
Hypothesis
fresh_not_finished
:
forall
n
,
finished
n
★
fresh
⊢
False
.
Hypothesis
started_not_fresh
:
forall
n
,
auth_fresh
★
started
n
⊢
False
.
Hypothesis
finished_not_start
:
forall
n
m
,
auth_start
n
★
finished
m
⊢
False
.
Hypothesis
started_start_agree
:
forall
n
m
,
auth_start
n
★
started
m
⊢
n
=
m
.
Hypothesis
started_finished_agree
:
forall
n
m
,
finished
n
★
started
m
⊢
n
=
m
.
Hypothesis
finished_agree
:
forall
n
m
,
finished
n
★
finished
m
⊢
n
=
m
.
Hypothesis
started_persistent
:
forall
n
,
PersistentP
(
started
n
).
Hypothesis
finished_persistent
:
forall
n
,
PersistentP
(
finished
n
).
(* We have that we cannot view shift from the initial state to false
(because the initial state is actually achievable). *)
Hypothesis
soundness
:
¬
(
auth_fresh
★
fresh
⊢
pvs1
False
).
(** Some general lemmas and proof mode compatibility. *)
Lemma
inv_open'
i
P
R
:
...
...
@@ 156,32 +181,68 @@ Section inv.
rewrite
/
ElimVs
.
rewrite
pvs0_pvs1
.
apply
elim_pvs1_pvs1
.
Qed
.
Global
Instance
exists_split_pvs0
{
A
}
P
(
Φ
:
A
→
iProp
)
:
FromExist
P
Φ
→
FromExist
(
pvs0
P
)
(
λ
a
,
pvs0
(
Φ
a
)).
Proof
.
rewrite
/
FromExist
=>
HP
.
apply
uPred
.
exist_elim
=>
a
.
apply
pvs0_mono
.
by
rewrite

HP
(
uPred
.
exist_intro
a
).
Qed
.
Global
Instance
exists_split_pvs1
{
A
}
P
(
Φ
:
A
→
iProp
)
:
FromExist
P
Φ
→
FromExist
(
pvs1
P
)
(
λ
a
,
pvs1
(
Φ
a
)).
Proof
.
rewrite
/
FromExist
=>
HP
.
apply
uPred
.
exist_elim
=>
a
.
apply
pvs1_mono
.
by
rewrite

HP
(
uPred
.
exist_intro
a
).
Qed
.
(** Now to the actual counterexample. *)
Definition
saved
(
i
:
name
)
(
P
:
iProp
)
:
iProp
:
=
inv
i
(
start
∨
□
P
★
finished
).
∃
F
:
name
→
iProp
,
P
=
F
i
★
started
i
★
inv
i
(
auth_fresh
∨
∃
j
,
auth_start
j
∨
(
finished
j
★
□
F
j
)).
Lemma
saved_alloc
(
P
:
name
→
iProp
)
:
start
⊢
pvs1
(
∃
i
,
saved
i
(
P
i
)).
auth_fresh
★
fresh
⊢
pvs1
(
∃
i
,
saved
i
(
P
i
)).
Proof
.
iIntros
"HS"
.
iApply
inv_alloc_dep
.
iIntros
(?).
by
iLeft
.
iIntros
"[Haf Hf]"
.
iVs
(
inv_alloc
(
auth_fresh
∨
∃
j
,
auth_start
j
∨
(
finished
j
★
□
P
j
))
with
"[Haf]"
)
as
(
i
)
"#Hi"
.
{
iLeft
.
done
.
}
iExists
i
.
iApply
inv_open'
.
iSplit
;
first
done
.
iIntros
"[HafHas]"
;
last
first
.
{
iExFalso
.
iDestruct
"Has"
as
(
j
)
"[Has  [Haf _]]"
.

iApply
fresh_not_start
.
iSplitL
"Has"
;
done
.

iApply
fresh_not_finished
.
iSplitL
"Haf"
;
done
.
}
iVs
((
fresh_start
i
)
with
"[Hf Haf]"
)
as
"[Has #Hs]"
;
first
by
iFrame
.
iApply
pvs0_intro
.
iSplitL
.

iRight
.
iExists
i
.
iLeft
.
done
.

iApply
pvs1_intro
.
iExists
P
.
iSplit
;
first
done
.
by
iFrame
"#"
.
Qed
.
Lemma
saved_
agree
i
P
Q
:
Lemma
saved_
cast
i
P
Q
:
saved
i
P
★
saved
i
Q
★
□
P
⊢
pvs1
(
□
Q
).
Proof
.
iIntros
"(#HsP & #HsQ & #HP)"
.
iApply
(
inv_open'
i
).
iSplit
;
first
iExact
"HsP"
.
iIntros
"HiP"
.
iAssert
(
pvs0
(
□
P
★
finished
))
with
"[HiP]"
as
"Hf"
.
{
iDestruct
"HiP"
as
"[Hs  [_ Hf]]"
.

iApply
pvs0_frame_l
.
iSplit
;
first
done
.
by
iApply
start_finish
.

iApply
pvs0_intro
.
iSplit
;
done
.
}
iVs
"Hf"
as
"[_ #Hf]"
.
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
(
inv_open'
i
).
iSplit
;
first
iExact
"HsQ"
.
iIntros
"[Hs  [#HQ _]]"
.
{
iExFalso
.
iApply
finish_no_start
.
eauto
.
}
iIntros
"(#HsP & #HsQ & #HP)"
.
iDestruct
"HsP"
as
(
FP
)
"(% & HsP & HiP)"
.
iApply
(
inv_open'
i
).
iSplit
;
first
done
.
iIntros
"[HaPHaP]"
.
{
iExFalso
.
iApply
started_not_fresh
.
iSplit
;
done
.
}
(* Can I state a viewshift and immediately run it? *)
iAssert
(
pvs0
(
finished
i
))
with
"[HaP]"
as
"Hf"
.
{
iDestruct
"HaP"
as
(
j
)
"[Hs  [Hf _]]"
.

iApply
start_finish
.
(* FIXME: iPoseProof as "%" calls the assertion "%" instead of moving to the Coq context. *)
iPoseProof
(
started_start_agree
with
"[#]"
)
as
"H"
;
first
by
iSplit
.
iDestruct
"H"
as
%<.
done
.

iApply
pvs0_intro
.
iPoseProof
(
started_finished_agree
with
"[#]"
)
as
"H"
;
first
by
iSplit
.
iDestruct
"H"
as
%<.
done
.
}
iVs
"Hf"
as
"#Hf"
.
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
iExists
i
.
iRight
.
subst
.
eauto
.
}
iDestruct
"HsQ"
as
(
FQ
)
"(% & HsQ & HiQ)"
.
iApply
(
inv_open'
i
).
iSplit
;
first
iExact
"HiQ"
.
iIntros
"[HaQ  HaQ]"
.
{
iExFalso
.
iApply
started_not_fresh
.
iSplit
;
done
.
}
iDestruct
"HaQ"
as
(
j
)
"[HaS  #[Hf' HQ]]"
.
{
iExFalso
.
iApply
finished_not_start
.
eauto
.
}
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
pvs1_intro
.
done
.
{
iRight
.
iExists
j
.
eauto
.
}
iPoseProof
(
finished_agree
with
"[#]"
)
as
"H"
.
{
iFrame
"Hf Hf'"
.
done
.
}
iDestruct
"H"
as
%<.
iApply
pvs1_intro
.
subst
Q
.
done
.
Qed
.
(*
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment