Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
118
Issues
118
List
Boards
Labels
Service Desk
Milestones
Merge Requests
20
Merge Requests
20
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
6be9e689
Commit
6be9e689
authored
Mar 07, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
docs: describe more algebra stuff
parent
f00f21a8
Pipeline
#279
passed with stage
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
55 additions
and
10 deletions
+55
-10
algebra/cofe.v
algebra/cofe.v
+2
-0
docs/algebra.tex
docs/algebra.tex
+41
-4
docs/logic.tex
docs/logic.tex
+10
-6
docs/model.tex
docs/model.tex
+2
-0
No files found.
algebra/cofe.v
View file @
6be9e689
...
...
@@ -89,6 +89,8 @@ Section cofe_mixin.
End
cofe_mixin
.
(** Discrete COFEs and Timeless elements *)
(* TODO RJ: On paper, I called these "discrete elements". I think that makes
more sense. *)
Class
Timeless
{
A
:
cofeT
}
(
x
:
A
)
:
=
timeless
y
:
x
≡
{
0
}
≡
y
→
x
≡
y
.
Arguments
timeless
{
_
}
_
{
_
}
_
_
.
Class
Discrete
(
A
:
cofeT
)
:
=
discrete_timeless
(
x
:
A
)
:
>
Timeless
x
.
...
...
docs/algebra.tex
View file @
6be9e689
...
...
@@ -18,7 +18,28 @@
\ralf
{
Copy the explanation from the paper, when that one is more polished.
}
\ralf
{
Describe non-expansive, contractive, category
$
\COFEs
$
, later, locally non-expansive/contractive, black later, discrete elements, discrete CMRAs.
}
\begin{defn}
An element
$
x
\in
A
$
of a COFE is called
\emph
{
discrete
}
if
\[
\All
y
\in
A. x
\nequiv
{
0
}
y
\Ra
x
=
y
\]
A COFE
$
A
$
is called
\emph
{
discrete
}
if all its elements are discrete.
\end{defn}
\begin{defn}
A function
$
f : A
\to
B
$
between two COFEs is
\emph
{
non-expansive
}
if
\[
\All
n, x
\in
A, y
\in
A. x
\nequiv
{
n
}
y
\Ra
f
(
x
)
\nequiv
{
n
}
f
(
y
)
\]
It is
\emph
{
contractive
}
if
\[
\All
n, x
\in
A, y
\in
A.
(
\All
m < n. x
\nequiv
{
m
}
y
)
\Ra
f
(
x
)
\nequiv
{
n
}
f
(
x
)
\]
\end{defn}
\begin{defn}
The category
$
\COFEs
$
consists of COFEs as objects, and non-expansive functions as arrows.
\end{defn}
Note that
$
\COFEs
$
is cartesian closed.
\begin{defn}
A functor
$
F :
\COFEs
\to
COFEs
$
is called
\emph
{
locally non-expansive
}
if its actions
$
F
_
1
$
on arrows is itself a non-expansive map.
Similarly,
$
F
$
is called
\emph
{
locally contractive
}
if
$
F
_
1
$
is a contractive map.
\end{defn}
\subsection
{
RA
}
...
...
@@ -91,17 +112,33 @@ This operation is needed to prove that $\later$ commutes with existential quanti
\end{mathpar}
(This assumes that the type
$
\type
$
is non-empty.)
\ralf
{
Describe monotone, category
$
\CMRAs
$
.
}
\begin{defn}
It is possible to do a
\emph
{
frame-preserving update
}
from
$
\melt
\in
\monoid
$
to
$
\meltsB
\subseteq
\monoid
$
, written
$
\melt
\mupd
\meltsB
$
, if
\[
\All
n,
\melt
_
f.
\melt
\mtimes
\melt
_
f
\in
\mval
_
n
\Ra
\Exists
\meltB
\in
\meltsB
.
\meltB
\mtimes
\melt
_
f
\in
\mval
_
n
\]
We further define
$
\melt
\mupd
\meltB
\eqdef
\melt
\mupd
\set\meltB
$
.
\end{defn}
Note that for RAs, this and the RA-based definition of a frame-preserving update coincide.
\ralf
{
Describe discrete CMRAs, and how they correspond to RAs.
}
\begin{defn}
A function
$
f : M
\to
N
$
between two CMRAs is
\emph
{
monotone
}
if it satisfies the following conditions:
\begin{enumerate}
\item
$
f
$
is non-expansive
\item
$
f
$
preserves validity:
\\
$
\All
n, x
\in
M. x
\in
\mval
_
n
\Ra
f
(
x
)
\in
\mval
_
n
$
\item
$
f
$
preserves CMRA inclusion:
\\
$
\All
x, y. x
\mincl
y
\Ra
f
(
x
)
\mincl
f
(
y
)
$
\end{enumerate}
\end{defn}
\begin{defn}
The category
$
\CMRAs
$
consists of CMRAs as objects, and monotone functions as arrows.
\end{defn}
Note that
$
\CMRAs
$
is a subcategory of
$
\COFEs
$
.
The notion of a locally non-expansive (or contractive) functor naturally generalizes to functors between these categories.
%%% Local Variables:
%%% mode: latex
...
...
docs/logic.tex
View file @
6be9e689
...
...
@@ -25,12 +25,15 @@ It does not matter whether they fork off an arbitrary expression.
\end{itemize}
\begin{defn}
[Context]
A function
$
\lctx
:
\textdom
{
Expr
}
\to
\textdom
{
Expr
}$
is a
\emph
{
context
}
if the following conditions are satisfied
\begin{align*}
\All\expr
.
&
\toval
(
\expr
) =
\bot
\Ra
\toval
(
\lctx
(
\expr
)) =
\bot
\tagH
{
lang-ctx-not-val
}
\\
\All
\expr
_
1,
\state
_
1,
\expr
_
2,
\state
_
2,
\expr
'.
&
\expr
_
1,
\state
_
1
\step
\expr
_
2,
\state
_
2,
\expr
'
\Ra
\lctx
(
\expr
_
1),
\state
_
1
\step
\lctx
(
\expr
_
2),
\state
_
2,
\expr
'
\tagH
{
lang-ctx-step
}
\\
\All
\expr
_
1',
\state
_
1,
\expr
_
2,
\state
_
2,
\expr
'.
&
\toval
(
\expr
_
1') =
\bot
\land
\lctx
(
\expr
_
1'),
\state
_
1
\step
\expr
_
2,
\state
_
2,
\expr
'
\Ra
\Exists\expr
_
2'.
\expr
_
2 =
\lctx
(
\expr
_
2')
\land
\expr
_
1',
\state
_
1
\step
\expr
_
2',
\state
_
2,
\expr
'
\tagH
{
lang-ctx-step-inv
}
\end{align*}
A function
$
\lctx
:
\textdom
{
Expr
}
\to
\textdom
{
Expr
}$
is a
\emph
{
context
}
if the following conditions are satisfied:
\begin{enumerate}
\item
$
\lctx
$
does not turn non-values into values:
\\
$
\All\expr
.
\toval
(
\expr
)
=
\bot
\Ra
\toval
(
\lctx
(
\expr
))
=
\bot
$
\item
One can perform reductions below
$
\lctx
$
:
\\
$
\All
\expr
_
1
,
\state
_
1
,
\expr
_
2
,
\state
_
2
,
\expr
'.
\expr
_
1
,
\state
_
1
\step
\expr
_
2
,
\state
_
2
,
\expr
'
\Ra
\lctx
(
\expr
_
1
)
,
\state
_
1
\step
\lctx
(
\expr
_
2
)
,
\state
_
2
,
\expr
'
$
\item
Reductions stay below
$
\lctx
$
until there is a value in the hole:
\\
$
\All
\expr
_
1
',
\state
_
1
,
\expr
_
2
,
\state
_
2
,
\expr
'.
\toval
(
\expr
_
1
'
)
=
\bot
\land
\lctx
(
\expr
_
1
'
)
,
\state
_
1
\step
\expr
_
2
,
\state
_
2
,
\expr
'
\Ra
\Exists\expr
_
2
'.
\expr
_
2
=
\lctx
(
\expr
_
2
'
)
\land
\expr
_
1
',
\state
_
1
\step
\expr
_
2
',
\state
_
2
,
\expr
'
$
\end{enumerate}
\end{defn}
\subsection
{
The concurrent language
}
...
...
@@ -62,6 +65,7 @@ To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item
A language
$
\Lang
$
\item
A locally contractive functor
$
\iFunc
:
\COFEs
\to
\CMRAs
$
defining the ghost state
\ralf
{$
\iFunc
$
also needs to have a single-unit.
}
\end{itemize}
\noindent
...
...
docs/model.tex
View file @
6be9e689
\section
{
Model and semantics
}
\ralf
{
What also needs to be done here: Define uPred and its later function; define black later; define the resource CMRA
}
The semantics closely follows the ideas laid out in~
\cite
{
catlogic
}
.
We just repeat some of the most important definitions here.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment