Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
672dff6d
Commit
672dff6d
authored
May 29, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Use proper notations in saved_prop.
parent
efc8fb86
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
10 additions
and
12 deletions
+10
-12
program_logic/saved_one_shot.v
program_logic/saved_one_shot.v
+7
-9
program_logic/saved_prop.v
program_logic/saved_prop.v
+3
-3
No files found.
program_logic/saved_one_shot.v
View file @
672dff6d
...
...
@@ -25,26 +25,24 @@ Section one_shot.
Global
Instance
ne_shot_own_persistent
γ
x
:
PersistentP
(
one_shot_own
γ
x
).
Proof
.
rewrite
/
one_shot_own
;
apply
_
.
Qed
.
Lemma
one_shot_alloc_strong
N
(
G
:
gset
gname
)
:
True
⊢
pvs
N
N
(
∃
γ
,
■
(
γ
∉
G
)
∧
one_shot_pending
γ
)
.
Lemma
one_shot_alloc_strong
E
(
G
:
gset
gname
)
:
True
⊢
|={
E
}=>
∃
γ
,
■
(
γ
∉
G
)
∧
one_shot_pending
γ
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Lemma
one_shot_alloc
N
:
True
⊢
pvs
N
N
(
∃
γ
,
one_shot_pending
γ
)
.
Lemma
one_shot_alloc
E
:
True
⊢
|={
E
}=>
∃
γ
,
one_shot_pending
γ
.
Proof
.
by
apply
own_alloc
.
Qed
.
Lemma
one_shot_init
N
γ
x
:
one_shot_pending
γ
⊢
pvs
N
N
(
one_shot_own
γ
x
).
Lemma
one_shot_init
E
γ
x
:
one_shot_pending
γ
⊢
|={
E
}=>
one_shot_own
γ
x
.
Proof
.
by
apply
own_update
,
one_shot_update_shoot
.
Qed
.
Lemma
one_shot_alloc_init
N
x
:
True
⊢
pvs
N
N
(
∃
γ
,
one_shot_own
γ
x
)
.
Lemma
one_shot_alloc_init
E
x
:
True
⊢
|={
E
}=>
∃
γ
,
one_shot_own
γ
x
.
Proof
.
rewrite
(
one_shot_alloc
N
).
apply
pvs_strip_pvs
.
rewrite
(
one_shot_alloc
E
).
apply
pvs_strip_pvs
.
apply
exist_elim
=>
γ
.
rewrite
-(
exist_intro
γ
).
apply
one_shot_init
.
Qed
.
Lemma
one_shot_agree
γ
x
y
:
(
one_shot_own
γ
x
★
one_shot_own
γ
y
)
⊢
▷
(
x
≡
y
).
Lemma
one_shot_agree
γ
x
y
:
(
one_shot_own
γ
x
★
one_shot_own
γ
y
)
⊢
▷
(
x
≡
y
).
Proof
.
rewrite
-
own_op
own_valid
one_shot_validI
/=
agree_validI
.
rewrite
agree_equivI
later_equivI
.
...
...
program_logic/saved_prop.v
View file @
672dff6d
...
...
@@ -23,11 +23,11 @@ Section saved_prop.
Global
Instance
saved_prop_persistent
γ
x
:
PersistentP
(
saved_prop_own
γ
x
).
Proof
.
rewrite
/
saved_prop_own
;
apply
_
.
Qed
.
Lemma
saved_prop_alloc_strong
N
x
(
G
:
gset
gname
)
:
True
⊢
pvs
N
N
(
∃
γ
,
■
(
γ
∉
G
)
∧
saved_prop_own
γ
x
)
.
Lemma
saved_prop_alloc_strong
E
x
(
G
:
gset
gname
)
:
True
⊢
|={
E
}=>
∃
γ
,
■
(
γ
∉
G
)
∧
saved_prop_own
γ
x
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Lemma
saved_prop_alloc
N
x
:
True
⊢
pvs
N
N
(
∃
γ
,
saved_prop_own
γ
x
)
.
Lemma
saved_prop_alloc
E
x
:
True
⊢
|={
E
}=>
∃
γ
,
saved_prop_own
γ
x
.
Proof
.
by
apply
own_alloc
.
Qed
.
Lemma
saved_prop_agree
γ
x
y
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment