Commit 5e5e90ea authored by Robbert Krebbers's avatar Robbert Krebbers

Restore program_logic/viewshifts.

parent 149d1ec6
Pipeline #2561 failed with stage
in 22 seconds
......@@ -70,6 +70,7 @@ program_logic/ownership.v
program_logic/weakestpre.v
program_logic/pviewshifts.v
program_logic/hoare.v
program_logic/viewshifts.v
program_logic/language.v
program_logic/ectx_language.v
program_logic/ectxi_language.v
......
From iris.program_logic Require Export weakestpre. (* viewshifts *)
From iris.program_logic Require Export weakestpre viewshifts.
From iris.proofmode Require Import weakestpre.
Definition ht `{irisG Λ Σ} (E : coPset) (P : iProp Σ)
......@@ -59,7 +59,7 @@ Lemma ht_val E v : {{ True }} of_val v @ E {{ v', v = v' }}.
Proof. iIntros "!# _". by iApply wp_value'. Qed.
Lemma ht_vs E P P' Φ Φ' e :
(P ={E}= P') {{ P' }} e @ E {{ Φ' }} ( v, Φ' v ={E}= Φ v)
(P ={E}=> P') {{ P' }} e @ E {{ Φ' }} ( v, Φ' v ={E}=> Φ v)
{{ P }} e @ E {{ Φ }}.
Proof.
iIntros "(#Hvs & #Hwp & #HΦ) !# HP". iVs ("Hvs" with "HP") as "HP".
......@@ -69,7 +69,7 @@ Qed.
Lemma ht_atomic E1 E2 P P' Φ Φ' e :
atomic e
(P ={E1,E2}= P') {{ P' }} e @ E2 {{ Φ' }} ( v, Φ' v ={E2,E1}= Φ v)
(P ={E1,E2}=> P') {{ P' }} e @ E2 {{ Φ' }} ( v, Φ' v ={E2,E1}=> Φ v)
{{ P }} e @ E1 {{ Φ }}.
Proof.
iIntros (?) "(#Hvs & #Hwp & #HΦ) !# HP". iApply (wp_atomic _ E2); auto.
......@@ -104,7 +104,7 @@ Proof. iIntros "#Hwp !# [HP $]". by iApply "Hwp". Qed.
Lemma ht_frame_step_l E1 E2 P R1 R2 e Φ :
to_val e = None E2 E1
(R1 ={E1,E2}= |={E2,E1}=> R2) {{ P }} e @ E2 {{ Φ }}
(R1 ={E1,E2}=> |={E2,E1}=> R2) {{ P }} e @ E2 {{ Φ }}
{{ R1 P }} e @ E1 {{ λ v, R2 Φ v }}.
Proof.
iIntros (??) "[#Hvs #Hwp] !# [HR HP]".
......@@ -114,7 +114,7 @@ Qed.
Lemma ht_frame_step_r E1 E2 P R1 R2 e Φ :
to_val e = None E2 E1
(R1 ={E1,E2}= |={E2,E1}=> R2) {{ P }} e @ E2 {{ Φ }}
(R1 ={E1,E2}=> |={E2,E1}=> R2) {{ P }} e @ E2 {{ Φ }}
{{ P R1 }} e @ E1 {{ λ v, Φ v R2 }}.
Proof.
iIntros (??) "[#Hvs #Hwp] !# [HP HR]".
......
From iris.program_logic Require Export pviewshifts.
From iris.proofmode Require Import pviewshifts invariants.
Definition vs `{irisG Λ Σ} (E1 E2 : coPset) (P Q : iProp Σ) : iProp Σ :=
( (P |={E1,E2}=> Q))%I.
Arguments vs {_ _ _} _ _ _%I _%I.
Instance: Params (@vs) 5.
Notation "P ={ E1 , E2 }=> Q" := (vs E1 E2 P%I Q%I)
(at level 99, E1,E2 at level 50, Q at level 200,
format "P ={ E1 , E2 }=> Q") : uPred_scope.
Notation "P ={ E }=> Q" := (P ={E,E}=> Q)%I
(at level 99, E at level 50, Q at level 200,
format "P ={ E }=> Q") : uPred_scope.
Section vs.
Context `{irisG Λ Σ}.
Implicit Types P Q R : iProp Σ.
Implicit Types N : namespace.
Global Instance vs_ne E1 E2 n: Proper (dist n ==> dist n ==> dist n) (vs E1 E2).
Proof. solve_proper. Qed.
Global Instance vs_proper E1 E2 : Proper (() ==> () ==> ()) (vs E1 E2).
Proof. apply ne_proper_2, _. Qed.
Lemma vs_mono E1 E2 P P' Q Q' :
(P P') (Q' Q) (P' ={E1,E2}=> Q') P ={E1,E2}=> Q.
Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed.
Global Instance vs_mono' E1 E2 : Proper (flip () ==> () ==> ()) (vs E1 E2).
Proof. solve_proper. Qed.
Lemma vs_false_elim E1 E2 P : False ={E1,E2}=> P.
Proof. iIntros "[]". Qed.
Lemma vs_timeless E P : TimelessP P P ={E}=> P.
Proof. by iIntros (?) "> ?". Qed.
Lemma vs_transitive E1 E2 E3 P Q R :
(P ={E1,E2}=> Q) (Q ={E2,E3}=> R) P ={E1,E3}=> R.
Proof.
iIntros "#[HvsP HvsQ] !# HP".
iVs ("HvsP" with "HP") as "HQ". by iApply "HvsQ".
Qed.
Lemma vs_reflexive E P : P ={E}=> P.
Proof. by iIntros "HP". Qed.
Lemma vs_impl E P Q : (P Q) P ={E}=> Q.
Proof. iIntros "#HPQ !# HP". by iApply "HPQ". Qed.
Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) R P ={E1,E2}=> R Q.
Proof. iIntros "#Hvs !# [$ HP]". by iApply "Hvs". Qed.
Lemma vs_frame_r E1 E2 P Q R : (P ={E1,E2}=> Q) P R ={E1,E2}=> Q R.
Proof. iIntros "#Hvs !# [HP $]". by iApply "Hvs". Qed.
Lemma vs_mask_frame_r E1 E2 Ef P Q :
E1 Ef (P ={E1,E2}=> Q) P ={E1 Ef,E2 Ef}=> Q.
Proof.
iIntros (?) "#Hvs !# HP". iApply pvs_mask_frame_r; auto. by iApply "Hvs".
Qed.
Lemma vs_inv N E P Q R :
nclose N E inv N R ( R P ={E nclose N}=> R Q) P ={E}=> Q.
Proof.
iIntros (?) "#[? Hvs] !# HP". iInv N as "HR" "Hclose".
iVs ("Hvs" with "[HR HP]") as "[? $]"; first by iFrame.
by iApply "Hclose".
Qed.
Lemma vs_alloc N P : P ={N}=> inv N P.
Proof. iIntros "HP". by iApply inv_alloc. Qed.
End vs.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment