Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Iris
Commits
5b048a31
Commit
5b048a31
authored
Feb 16, 2016
by
Robbert Krebbers
Browse files
Simplify up_set_proper.
parent
edfd4f51
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/sts.v
View file @
5b048a31
...
...
@@ -59,8 +59,8 @@ Global Instance valid : Valid (bound sts) := λ x,
end
.
Definition
up
(
s
:
state
)
(
T
:
set
token
)
:
set
state
:
=
mkSet
(
rtc
(
frame_step
T
)
s
).
Definition
up_set
(
S
:
set
state
)
(
T
:
set
token
)
:
set
state
:
=
S
≫
=
λ
s
,
up
s
T
.
Definition
up_set
(
S
:
set
state
)
(
T
:
set
token
)
:
set
state
:
=
S
≫
=
λ
s
,
up
s
T
.
Global
Instance
unit
:
Unit
(
bound
sts
)
:
=
λ
x
,
match
x
with
|
bound_frag
S'
_
=>
bound_frag
(
up_set
S'
∅
)
∅
...
...
@@ -135,9 +135,7 @@ Proof.
f_equiv
;
last
done
.
move
=>
s1
s2
Hs
.
simpl
in
HT
.
by
apply
up_preserving
.
Qed
.
Instance
up_set_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
up_set
.
Proof
.
by
intros
??
EQ1
??
EQ2
;
split
;
apply
up_set_preserving
;
rewrite
?EQ1
?EQ2
.
Qed
.
Proof
.
by
intros
S1
S2
[??]
T1
T2
[??]
;
split
;
apply
up_set_preserving
.
Qed
.
Lemma
elem_of_up
s
T
:
s
∈
up
s
T
.
Proof
.
constructor
.
Qed
.
Lemma
subseteq_up_set
S
T
:
S
⊆
up_set
S
T
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment