Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
5ac24c8d
Commit
5ac24c8d
authored
May 31, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Formalization of Ralf's boxes.
parent
7f6ad26a
Pipeline
#1201
passed with stage
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
191 additions
and
0 deletions
+191
-0
_CoqProject
_CoqProject
+1
-0
program_logic/boxes.v
program_logic/boxes.v
+190
-0
No files found.
_CoqProject
View file @
5ac24c8d
...
...
@@ -82,6 +82,7 @@ program_logic/saved_one_shot.v
program_logic/auth.v
program_logic/sts.v
program_logic/namespaces.v
program_logic/boxes.v
heap_lang/lang.v
heap_lang/tactics.v
heap_lang/wp_tactics.v
...
...
program_logic/boxes.v
0 → 100644
View file @
5ac24c8d
From
iris
.
algebra
Require
Import
upred_big_op
.
From
iris
.
program_logic
Require
Import
auth
saved_prop
.
From
iris
.
proofmode
Require
Import
tactics
invariants
ghost_ownership
.
Import
uPred
.
(** The CMRAs we need. *)
Class
boxG
Λ
Σ
:
=
boxG_inG
:
>
inG
Λ
Σ
(
prodR
(
authR
(
optionUR
(
exclR
boolC
)))
(
optionR
(
agreeR
(
laterC
(
iPrePropG
Λ
Σ
))))).
Section
box_defs
.
Context
`
{
boxG
Λ
Σ
}
(
N
:
namespace
).
Notation
iProp
:
=
(
iPropG
Λ
Σ
).
Definition
box_own_auth
(
γ
:
gname
)
(
a
:
auth
(
option
(
excl
bool
)))
:
iProp
:
=
own
γ
(
a
,
∅
).
Definition
box_own_prop
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
own
γ
(
∅
:
auth
_
,
Some
(
to_agree
(
Next
(
iProp_unfold
P
)))).
Definition
box_inv
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
(
∃
b
,
box_own_auth
γ
(
●
Excl'
b
)
★
box_own_prop
γ
P
★
if
b
then
P
else
True
)%
I
.
Definition
box_slice
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
inv
N
(
box_inv
γ
P
).
Definition
box
(
f
:
gmap
gname
bool
)
(
P
:
iProp
)
:
iProp
:
=
(
∃
Φ
:
gname
→
iProp
,
▷
(
P
≡
[
★
map
]
γ
↦
b
∈
f
,
Φ
γ
)
★
[
★
map
]
γ
↦
b
∈
f
,
box_own_auth
γ
(
◯
Excl'
b
)
★
box_own_prop
γ
(
Φ
γ
)
★
inv
N
(
box_inv
γ
(
Φ
γ
)))%
I
.
End
box_defs
.
Section
box
.
Context
`
{
boxG
Λ
Σ
}
(
N
:
namespace
).
Notation
iProp
:
=
(
iPropG
Λ
Σ
).
Implicit
Types
P
Q
:
iProp
.
Instance
box_own_auth_timeless
γ
(
a
:
auth
(
option
(
excl
bool
)))
:
TimelessP
(
box_own_auth
γ
a
).
Proof
.
apply
own_timeless
,
pair_timeless
;
apply
_
.
Qed
.
Lemma
box_own_auth_agree
γ
b1
b2
:
(
box_own_auth
γ
(
●
Excl'
b1
)
★
box_own_auth
γ
(
◯
Excl'
b2
))
⊢
(
b1
=
b2
).
Proof
.
rewrite
/
box_own_prop
-
own_op
own_valid
prod_validI
/=
and_elim_l
.
iIntros
"Hb"
.
by
iDestruct
"Hb"
as
%
[[[]
[=]%
leibniz_equiv
]
?]%
auth_valid_discrete
.
Qed
.
Lemma
box_own_auth_update
E
γ
b1
b2
b3
:
(
box_own_auth
γ
(
●
Excl'
b1
)
★
box_own_auth
γ
(
◯
Excl'
b2
))
⊢
|={
E
}=>
(
box_own_auth
γ
(
●
Excl'
b3
)
★
box_own_auth
γ
(
◯
Excl'
b3
)).
Proof
.
rewrite
/
box_own_prop
-!
own_op
.
apply
own_update
,
prod_update
;
simpl
;
last
reflexivity
.
by
apply
(
auth_local_update
(
λ
_
,
Excl'
b3
)).
Qed
.
Lemma
box_own_agree
γ
Q1
Q2
:
(
box_own_prop
γ
Q1
★
box_own_prop
γ
Q2
)
⊢
▷
(
Q1
≡
Q2
).
Proof
.
rewrite
/
box_own_prop
-
own_op
own_valid
prod_validI
/=
and_elim_r
.
rewrite
option_validI
/=
agree_validI
agree_equivI
later_equivI
/=.
iIntros
"#HQ >"
.
rewrite
-{
2
}(
iProp_fold_unfold
Q1
).
iRewrite
"HQ"
.
by
rewrite
iProp_fold_unfold
.
Qed
.
Lemma
box_alloc
:
True
⊢
box
N
∅
True
.
Proof
.
iIntros
;
iExists
(
λ
_
,
True
)%
I
;
iSplit
.
-
iNext
.
by
rewrite
big_sepM_empty
.
-
by
rewrite
big_sepM_empty
.
Qed
.
Lemma
box_insert
f
P
Q
:
▷
box
N
f
P
⊢
|={
N
}=>
∃
γ
,
f
!!
γ
=
None
★
box_slice
N
γ
Q
★
▷
box
N
(<[
γ
:
=
false
]>
f
)
(
Q
★
P
).
Proof
.
iIntros
"H"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iPvs
(
own_alloc_strong
(
●
Excl'
false
⋅
◯
Excl'
false
,
Some
(
to_agree
(
Next
(
iProp_unfold
Q
))))
_
(
dom
_
f
))
as
{
γ
}
"[Hdom Hγ]"
;
first
done
.
rewrite
pair_split
.
iDestruct
"Hγ"
as
"[[Hγ Hγ'] #HγQ]"
.
iDestruct
"Hdom"
as
%
?%
not_elem_of_dom
.
iPvs
(
inv_alloc
N
_
(
box_inv
γ
Q
)
with
"[Hγ]"
)
as
"#Hinv"
;
first
done
.
{
iNext
.
iExists
false
.
by
repeat
iSplit
.
}
iPvsIntro
;
iExists
γ
;
repeat
iSplit
;
auto
.
iNext
.
iExists
(<[
γ
:
=
Q
]>
Φ
)
;
iSplit
.
-
iNext
.
iRewrite
"HeqP"
.
by
rewrite
big_sepM_fn_insert'
.
-
rewrite
(
big_sepM_fn_insert
(
λ
_
_
P'
,
_
★
_
_
P'
★
_
_
(
_
_
P'
)))%
I
//.
iFrame
"Hf Hγ'"
.
by
iSplit
.
Qed
.
Lemma
box_delete
f
P
Q
γ
:
f
!!
γ
=
Some
false
→
(
box_slice
N
γ
Q
★
▷
box
N
f
P
)
⊢
|={
N
}=>
∃
P'
,
▷
▷
(
P
≡
(
Q
★
P'
))
★
▷
box
N
(
delete
γ
f
)
P'
.
Proof
.
iIntros
{?}
"[#Hinv H]"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iExists
([
★
map
]
γ
'
↦
_
∈
delete
γ
f
,
Φ
γ
'
)%
I
.
iInv
N
as
{
b
}
"(Hγ & #HγQ &_)"
;
iPvsIntro
;
iNext
.
iDestruct
(
big_sepM_delete
_
f
_
false
with
"Hf"
)
as
"[[Hγ' #[HγΦ ?]] ?]"
;
first
done
.
iDestruct
(
box_own_agree
γ
Q
(
Φ
γ
)
with
"[#]"
)
as
"HeqQ"
;
first
by
iSplit
.
iDestruct
(
box_own_auth_agree
γ
b
false
with
"[#]"
)
as
"%"
;
subst
;
first
by
iFrame
"Hγ"
.
iSplitL
"Hγ"
;
last
iSplit
.
-
iExists
false
;
repeat
iSplit
;
auto
.
-
iNext
.
iRewrite
"HeqP"
.
iRewrite
"HeqQ"
.
by
rewrite
-
big_sepM_delete
.
-
iExists
Φ
;
by
iSplit
;
[
iNext
|].
Qed
.
Lemma
box_fill
f
γ
b
P
Q
:
f
!!
γ
=
Some
b
→
(
box_slice
N
γ
Q
★
▷
Q
★
▷
box
N
f
P
)
⊢
|={
N
}=>
▷
box
N
(<[
γ
:
=
true
]>
f
)
P
.
Proof
.
iIntros
{?}
"(#Hinv & HQ & H)"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iInv
N
as
{
b'
}
"(Hγ & #HγQ & _)"
;
iTimeless
"Hγ"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_delete
_
f
_
b
with
"Hf"
)
as
"[[Hγ' #[HγΦ Hinv']] ?]"
;
first
done
;
iTimeless
"Hγ'"
.
iPvs
(
box_own_auth_update
_
γ
b'
b
true
with
"[Hγ Hγ']"
)
as
"[Hγ Hγ']"
;
first
by
iFrame
"Hγ"
.
iPvsIntro
;
iNext
;
iSplitL
"Hγ HQ"
;
first
(
iExists
true
;
by
iFrame
"Hγ HQ"
).
iExists
Φ
;
iSplit
.
-
by
rewrite
-
insert_delete
big_sepM_insert
?lookup_delete
//
big_sepM_delete
.
-
rewrite
-
insert_delete
big_sepM_insert
?lookup_delete
//.
iFrame
"Hγ'"
.
by
repeat
iSplit
.
Qed
.
Lemma
box_empty
f
P
Q
γ
:
f
!!
γ
=
Some
true
→
(
box_slice
N
γ
Q
★
▷
box
N
f
P
)
⊢
|={
N
}=>
▷
Q
★
▷
box
N
(<[
γ
:
=
false
]>
f
)
P
.
Proof
.
iIntros
{?}
"[#Hinv H]"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iInv
N
as
{
b
}
"(Hγ & #HγQ & HQ)"
;
iTimeless
"Hγ"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_delete
_
f
_
true
with
"Hf"
)
as
"[[Hγ' #[HγΦ Hinv']] ?]"
;
first
done
;
iTimeless
"Hγ'"
.
iDestruct
(
box_own_auth_agree
γ
b
true
with
"[#]"
)
as
"%"
;
subst
;
first
by
iFrame
"Hγ"
.
iFrame
"HQ"
.
iPvs
(
box_own_auth_update
_
γ
true
true
false
with
"[Hγ Hγ']"
)
as
"[Hγ Hγ']"
;
first
by
iFrame
"Hγ"
.
iPvsIntro
;
iNext
;
iSplitL
"Hγ"
;
first
(
iExists
false
;
by
repeat
iSplit
).
iExists
Φ
;
iSplit
.
-
by
rewrite
-
insert_delete
big_sepM_insert
?lookup_delete
//
big_sepM_delete
.
-
rewrite
-
insert_delete
big_sepM_insert
?lookup_delete
//.
iFrame
"Hγ'"
.
by
repeat
iSplit
.
Qed
.
Lemma
box_fill_all
f
P
Q
:
(
box
N
f
P
★
▷
P
)
⊢
|={
N
}=>
box
N
(
const
true
<$>
f
)
P
.
Proof
.
iIntros
"[H HP]"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iExists
Φ
;
iSplitR
;
first
by
rewrite
big_sepM_fmap
.
rewrite
eq_iff
later_iff
big_sepM_later
;
iDestruct
(
"HeqP"
with
"HP"
)
as
"HP"
.
iCombine
"Hf"
"HP"
as
"Hf"
.
rewrite
big_sepM_fmap
;
iApply
(
pvs_big_sepM
_
_
f
).
iApply
(
big_sepM_impl
_
_
f
)
;
iFrame
"Hf"
.
iAlways
;
iIntros
{
γ
b'
?}
"[(Hγ' & #$ & #$) HΦ]"
.
iInv
N
as
{
b
}
"[Hγ _]"
;
iTimeless
"Hγ"
.
iPvs
(
box_own_auth_update
_
γ
b
b'
true
with
"[Hγ Hγ']"
)
as
"[Hγ $]"
;
first
by
iFrame
"Hγ"
.
iPvsIntro
;
iNext
;
iExists
true
.
by
iFrame
"HΦ Hγ"
.
Qed
.
Lemma
box_empty_all
f
P
Q
:
map_Forall
(
λ
_
,
(
true
=))
f
→
box
N
f
P
⊢
|={
N
}=>
▷
P
★
box
N
(
const
false
<$>
f
)
P
.
Proof
.
iIntros
{?}
"H"
;
iDestruct
"H"
as
{
Φ
}
"[#HeqP Hf]"
.
iAssert
([
★
map
]
γ↦
b
∈
f
,
▷
Φ
γ
★
box_own_auth
γ
(
◯
Excl'
false
)
★
box_own_prop
γ
(
Φ
γ
)
★
inv
N
(
box_inv
γ
(
Φ
γ
)))%
I
with
"=>[Hf]"
as
"[HΦ ?]"
.
{
iApply
(
pvs_big_sepM
_
_
f
)
;
iApply
(
big_sepM_impl
_
_
f
)
;
iFrame
"Hf"
.
iAlways
;
iIntros
{
γ
b
?}
"(Hγ' & #$ & #$)"
.
assert
(
true
=
b
)
as
<-
by
eauto
.
iInv
N
as
{
b
}
"(Hγ & _ & HΦ)"
;
iTimeless
"Hγ"
.
iDestruct
(
box_own_auth_agree
γ
b
true
with
"[#]"
)
as
"%"
;
subst
;
first
by
iFrame
"Hγ"
.
iPvs
(
box_own_auth_update
_
γ
true
true
false
with
"[Hγ Hγ']"
)
as
"[Hγ $]"
;
first
by
iFrame
"Hγ"
.
iPvsIntro
;
iNext
.
iFrame
"HΦ"
.
iExists
false
.
by
iFrame
"Hγ"
;
iSplit
.
}
iPvsIntro
;
iSplitL
"HΦ"
.
-
rewrite
eq_iff
later_iff
big_sepM_later
.
by
iApply
"HeqP"
.
-
iExists
Φ
;
iSplit
;
by
rewrite
big_sepM_fmap
.
Qed
.
End
box
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment