Commit 5a623192 authored by Ralf Jung's avatar Ralf Jung

Use Coq #[deprecated] attribute

parent fea0c2de
From iris.algebra Require Import ofe cmra.
Set Default Proof Using "Type".
Local Set Warnings "-deprecated".
(* Old notation for backwards compatibility. *)
(* Deprecated 2016-11-22. Use ofeT instead. *)
#[deprecated(note = "Use ofeT instead.")]
Notation cofeT := ofeT (only parsing).
(* Deprecated 2016-12-09. Use agree instead. *)
......@@ -14,13 +17,15 @@ Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
(* This is isomorphic to option, but has a very different RA structure. *)
Inductive dec_agree (A : Type) : Type :=
| DecAgree : A dec_agree A
| DecAgreeBot : dec_agree A.
Inductive dec_agree_ (A : Type) : Type :=
| DecAgree : A dec_agree_ A
| DecAgreeBot : dec_agree_ A.
Arguments DecAgree {_} _.
Arguments DecAgreeBot {_}.
Instance maybe_DecAgree {A} : Maybe (@DecAgree A) := λ x,
match x with DecAgree a => Some a | _ => None end.
#[deprecated(note = "Use agree instead.")]
Notation dec_agree := dec_agree_.
Section dec_agree.
Context `{EqDecision A}.
......@@ -38,6 +43,7 @@ Instance dec_agree_op : Op (dec_agree A) := λ x y,
end.
Instance dec_agree_pcore : PCore (dec_agree A) := Some.
#[deprecated(note = "Use agree instead.")]
Definition dec_agree_ra_mixin : RAMixin (dec_agree A).
Proof.
apply ra_total_mixin; apply _ || eauto.
......@@ -47,6 +53,7 @@ Proof.
- by intros [?|] [?|] ?.
Qed.
#[deprecated(note = "Use agree instead.")]
Canonical Structure dec_agreeR : cmraT :=
discreteR (dec_agree A) dec_agree_ra_mixin.
......@@ -59,15 +66,19 @@ Proof. intros x. by exists x. Qed.
Global Instance dec_agree_core_id (x : dec_agreeR) : CoreId x.
Proof. by constructor. Qed.
#[deprecated(note = "Use agree instead.")]
Lemma dec_agree_ne a b : a b DecAgree a DecAgree b = DecAgreeBot.
Proof. intros. by rewrite /= decide_False. Qed.
#[deprecated(note = "Use agree instead.")]
Lemma dec_agree_idemp (x : dec_agree A) : x x = x.
Proof. destruct x; by rewrite /= ?decide_True. Qed.
#[deprecated(note = "Use agree instead.")]
Lemma dec_agree_op_inv (x1 x2 : dec_agree A) : (x1 x2) x1 = x2.
Proof. destruct x1, x2; by repeat (simplify_eq/= || case_match). Qed.
#[deprecated(note = "Use agree instead.")]
Lemma DecAgree_included a b : DecAgree a DecAgree b a = b.
Proof.
split. intros [[c|] [=]%leibniz_equiv]. by simplify_option_eq. by intros ->.
......
......@@ -1368,6 +1368,7 @@ Tactic Notation "iModIntro" uconstr(sel) :=
Tactic Notation "iModIntro" := iModIntro _.
(** DEPRECATED *)
#[deprecated(note = "Use iModIntro instead")]
Tactic Notation "iAlways" := iModIntro.
(** * Later *)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment