Commit 576e6a3a by Robbert Krebbers

### Tweak names in proof.

parent c85f2e0d
 ... @@ -128,11 +128,11 @@ Section list. ... @@ -128,11 +128,11 @@ Section list. Global Instance big_opL_ne n : Global Instance big_opL_ne n : Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> eq ==> dist n) (big_opL o (A:=A)). eq ==> dist n) (big_opL o (A:=A)). Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Global Instance big_opL_proper' : Global Instance big_opL_proper' : Proper (pointwise_relation _ (pointwise_relation _ (≡)) ==> eq ==> (≡)) Proper (pointwise_relation _ (pointwise_relation _ (≡)) ==> eq ==> (≡)) (big_opL o (A:=A)). (big_opL o (A:=A)). Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Lemma big_opL_consZ_l (f : Z → A → M) x l : Lemma big_opL_consZ_l (f : Z → A → M) x l : ([^o list] k↦y ∈ x :: l, f k y) = f 0 x `o` [^o list] k↦y ∈ l, f (1 + k)%Z y. ([^o list] k↦y ∈ x :: l, f k y) = f 0 x `o` [^o list] k↦y ∈ l, f (1 + k)%Z y. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!