Commit 55eee5a6 authored by Ralf Jung's avatar Ralf Jung

introduce a notion of disjoint namespaces, and prove a few lemmas about it

parent df372f81
......@@ -30,16 +30,42 @@ Proof.
Lemma ndot_nclose `{Countable A} N x : encode (ndot N x) nclose N.
Proof. apply nclose_subseteq with x, encode_nclose. Qed.
Lemma nclose_disjoint `{Countable A} N (x y : A) :
x y nclose (ndot N x) nclose (ndot N y) = .
Definition ndisj (N1 N2 : namespace) :=
N1' N2', N1' `suffix_of` N1 N2' `suffix_of` N2
length N1' = length N2' N1' N2'.
Global Instance ndisj_comm : Comm iff ndisj.
Proof. intros N1 N2. rewrite /ndisj; naive_solver. Qed.
Lemma ndot_ne_disj `{Countable A} N (x y : A) :
x y ndisj (ndot N x) (ndot N y).
intros Hxy. exists (ndot N x), (ndot N y). split_ands; try done; [].
by apply not_inj2_2.
Lemma ndot_preserve_disj_l `{Countable A} N1 N2 (x : A) :
ndisj N1 N2 ndisj (ndot N1 x) N2.
intros (N1' & N2' & Hpr1 & Hpr2 & Hl & Hne). exists N1', N2'.
split_ands; try done; []. by apply suffix_of_cons_r.
Lemma ndot_preserve_disj_r `{Countable A} N1 N2 (x : A) :
ndisj N1 N2 ndisj N1 (ndot N2 x).
rewrite ![ndisj N1 _]comm. apply ndot_preserve_disj_l.
Lemma ndisj_disjoint N1 N2 :
ndisj N1 N2 nclose N1 nclose N2 = .
intros Hxy; apply elem_of_equiv_empty_L=> p; unfold nclose, ndot.
intros (N1' & N2' & [N1'' Hpr1] & [N2'' Hpr2] & Hl & Hne). subst N1 N2.
apply elem_of_equiv_empty_L=> p; unfold nclose.
rewrite elem_of_intersection !elem_coPset_suffixes; intros [[q ->] [q' Hq]].
apply Hxy, (inj encode), (inj encode_nat); revert Hq.
rewrite !(list_encode_cons (encode _)).
rewrite !(assoc_L _) (inj_iff (++ _)%positive) /=.
generalize (encode_nat (encode y)).
induction (encode_nat (encode x)); intros [|?] ?; f_equal'; naive_solver.
rewrite !list_encode_app !assoc in Hq.
apply Hne. eapply list_encode_suffix_eq; done.
Local Hint Resolve nclose_subseteq ndot_nclose.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment