Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Iris
Commits
548a5de9
Commit
548a5de9
authored
Aug 09, 2016
by
Zhen Zhang
Browse files
use pair of ref in ticket lock
parent
59a8f5bf
Changes
1
Hide whitespace changes
Inline
Side-by-side
heap_lang/lib/ticket_lock.v
View file @
548a5de9
...
...
@@ -7,26 +7,27 @@ From iris.algebra Require Import gset.
Import
uPred
.
Definition
wait_loop
:
val
:
=
rec
:
"wait_loop"
"x"
"l"
:
=
let
:
"o"
:
=
Fst
!
"l
"
in
rec
:
"wait_loop"
"x"
"l
ock
"
:
=
let
:
"o"
:
=
!(
Fst
"l
ock"
)
in
if
:
"x"
=
"o"
then
#()
(* my turn *)
else
"wait_loop"
"x"
"l"
.
else
"wait_loop"
"x"
"lock"
.
Definition
newlock
:
val
:
=
λ
:
<>,
(
(* owner *)
ref
#
0
,
(* next *)
ref
#
0
).
Definition
newlock
:
val
:
=
λ
:
<>,
ref
(
(* owner *)
#
0
,
(* next *)
#
0
).
Definition
acquire
:
val
:
=
rec
:
"acquire"
"l"
:
=
let
:
"
oldl
"
:
=
!
"l"
in
if
:
CAS
"l"
"oldl"
(
Fst
"oldl"
,
Snd
"oldl
"
+
#
1
)
then
wait_loop
(
Snd
"oldl"
)
"l
"
else
"acquire"
"l"
.
rec
:
"acquire"
"l
ock
"
:
=
let
:
"
n
"
:
=
!
(
Snd
"lock"
)
in
if
:
CAS
(
Snd
"lock"
)
"n"
(
"n
"
+
#
1
)
then
wait_loop
"n"
"lock
"
else
"acquire"
"l
ock
"
.
Definition
release
:
val
:
=
rec
:
"release"
"l"
:
=
let
:
"o
ldl
"
:
=
!
"l"
in
if
:
CAS
"l"
"oldl"
(
Fst
"oldl"
+
#
1
,
Snd
"oldl"
)
rec
:
"release"
"l
ock
"
:
=
let
:
"o"
:
=
!
(
Fst
"lock"
)
in
if
:
CAS
(
Fst
"lock"
)
"o"
(
"o"
+
#
1
)
then
#()
else
"release"
"l"
.
else
"release"
"l
ock
"
.
Global
Opaque
newlock
acquire
release
wait_loop
.
...
...
@@ -42,28 +43,29 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
Proof
.
intros
[?
[?%
subG_inG
_
]%
subG_inv
]%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
).
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
)
(
HN
:
heapN
⊥
N
)
.
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:
=
(
gs
=
GSet
(
seq_set
0
n
))%
I
.
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
o
n
:
nat
,
l
↦
(#
o
,
#
n
)
★
auth_inv
γ
1
(
tickets_inv
n
)
★
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{[
o
]})))%
I
.
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
(
o
n
:
nat
),
lo
↦
#
o
★
ln
↦
#
n
★
auth_inv
γ
1
(
tickets_inv
n
)
★
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{[
o
]})))%
I
.
Definition
is_lock
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
))%
I
.
Definition
is_lock
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
))%
I
.
Definition
issued
(
l
:
loc
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
)
∧
auth_own
γ
1
(
GSet
{[
x
]}))%
I
.
Definition
issued
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
∧
auth_own
γ
1
(
GSet
{[
x
]}))%
I
.
Definition
locked
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
)
∧
own
γ
2
(
Excl
()))%
I
.
Definition
locked
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
∧
own
γ
2
(
Excl
()))%
I
.
Global
Instance
lock_inv_ne
n
γ
1
γ
2
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
l
).
Global
Instance
lock_inv_ne
n
γ
1
γ
2
l
o
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
l
o
ln
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
).
Proof
.
solve_proper
.
Qed
.
...
...
@@ -74,14 +76,13 @@ Global Instance is_lock_persistent l R : PersistentP (is_lock l R).
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
#
l
)
⊢
WP
newlock
#()
{{
Φ
}}.
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
l
)
⊢
WP
newlock
#()
{{
Φ
}}.
Proof
.
iIntros
(?)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
l
as
"Hl"
.
iIntros
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
l
o
as
"Hl
o"
.
wp_alloc
ln
as
"Hln
"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl'
∅
)
∅
)
{[
γ
2
]})
as
(
γ
1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
l
R
)
with
"[-HΦ]"
).
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
with
"[-HΦ]"
).
{
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
...
...
@@ -93,90 +94,90 @@ Proof.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
γ
1
,
γ
2
.
iExists
γ
1
,
γ
2
,
lo
,
ln
.
iSplit
;
by
auto
.
Qed
.
Lemma
wait_loop_spec
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
l
x
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
#
l
{{
Φ
}}.
issued
l
x
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #? & Ht)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_let
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hl Ha]"
"Hclose"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #? & Ht)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_let
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Ha]
]
"
"Hclose"
.
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[->|
Hneq
].
-
iDestruct
"Ha"
as
"[Hainv [[Ho HR] | Haown]]"
.
+
iVs
(
"Hclose"
with
"[Hl Hainv Ht]"
).
+
iVs
(
"Hclose"
with
"[Hl
o Hln
Hainv Ht]"
).
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
iVsIntro
.
wp_proj
.
wp_let
.
wp_op
=>[
_
|[]]
//.
iVsIntro
.
wp_let
.
wp_op
=>[
_
|[]]
//.
wp_if
.
iVsIntro
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
1
,
γ
2
;
eauto
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
1
,
γ
2
,
lo
,
ln
;
eauto
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?%
gset_disj_valid_op
.
set_solver
.
-
iVs
(
"Hclose"
with
"[Hl Ha]"
).
-
iVs
(
"Hclose"
with
"[Hl
o Hln
Ha]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_proj
.
wp_let
.
wp_op
=>?
;
first
omega
.
iVsIntro
.
wp_let
.
wp_op
=>?
;
first
omega
.
wp_if
.
by
iApply
(
"IH"
with
"Ht"
).
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
#
l
{{
Φ
}}.
is_lock
l
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
l
{{
Φ
}}.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hl Ha]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl Ha]"
).
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
subst
.
wp_proj
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Ha]
]
"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl
o Hln
Ha]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_let
.
wp_proj
.
wp_proj
.
wp_op
.
iVsIntro
.
wp_let
.
wp_proj
.
wp_op
.
wp_bind
(
CAS
_
_
_
).
iInv
N
as
(
o'
n'
)
"[Hl [Hainv Haown]]"
"Hclose"
.
destruct
(
decide
(
(#
o'
,
#
n'
)
=
(#
o
,
#
n
))
)
%
V
as
[[=
->%
Nat2Z
.
inj
->%
Nat2Z
.
inj
]
|
Hneq
].
iInv
N
as
(
o'
n'
)
"[Hl
o' [Hln'
[Hainv Haown]]
]
"
"Hclose"
.
destruct
(
decide
(#
n'
=
#
n
))%
V
as
[[=
->%
Nat2Z
.
inj
]
|
Hneq
].
-
wp_cas_suc
.
iDestruct
"Hainv"
as
(
s
)
"[Ho %]"
;
subst
.
iVs
(
own_update
with
"Ho"
)
as
"Ho"
.
{
eapply
auth_update_no_frag
,
(
gset_alloc_empty_local_update
n
).
rewrite
elem_of_seq_set
;
omega
.
}
iDestruct
"Ho"
as
"[Hofull Hofrag]"
.
iVs
(
"Hclose"
with
"[Hl Haown Hofull]"
).
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Haown Hofull]"
).
{
rewrite
gset_disj_union
;
last
by
apply
(
seq_set_S_disjoint
0
).
rewrite
-(
seq_set_S_union_L
0
).
iNext
.
iExists
o
,
(
S
n
)%
nat
.
iNext
.
iExists
o
'
,
(
S
n
)%
nat
.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
))).
by
iFrame
.
}
iVsIntro
.
wp_if
.
wp_proj
.
iApply
wait_loop_spec
.
iVsIntro
.
wp_if
.
iApply
(
wait_loop_spec
(#
lo
,
#
ln
))
.
iSplitR
"HΦ"
;
last
by
done
.
rewrite
/
issued
/
auth_own
;
eauto
10
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl Hainv Haown]"
).
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Hainv Haown]"
).
{
iNext
.
iExists
o'
,
n'
.
by
iFrame
.
}
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
locked
l
R
★
R
★
Φ
#()
⊢
WP
release
#
l
{{
Φ
}}.
locked
l
R
★
R
★
Φ
#()
⊢
WP
release
l
{{
Φ
}}.
Proof
.
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #? & Hγ)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hl Hr]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl Hr]"
).
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #? & Hγ)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Hr]
]
"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl
o Hln
Hr]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_let
.
wp_bind
(
CAS
_
_
_
).
wp_proj
.
wp_op
.
wp_proj
.
iInv
N
as
(
o'
n'
)
"[Hl Hr]"
"Hclose"
.
destruct
(
decide
(
(#
o'
,
#
n'
)
=
(
#
o
,
#
n
)
))%
V
as
[[=
->%
Nat2Z
.
inj
->%
Nat2Z
.
inj
]
|
Hneq
].
wp_proj
.
wp_op
.
iInv
N
as
(
o'
n'
)
"[Hl
o' [Hln'
Hr]
]
"
"Hclose"
.
destruct
(
decide
(#
o'
=
#
o
))%
V
as
[[=
->%
Nat2Z
.
inj
]
|
Hneq
].
-
wp_cas_suc
.
iDestruct
"Hr"
as
"[Hainv [[Ho _] | Hown]]"
.
+
iExFalso
.
iCombine
"Hγ"
"Ho"
as
"Ho"
.
iDestruct
(
own_valid
with
"#Ho"
)
as
%[].
+
iVs
(
"Hclose"
with
"[Hl HR Hγ Hainv]"
).
{
iNext
.
iExists
(
o
+
1
)%
nat
,
n
%
nat
.
+
iVs
(
"Hclose"
with
"[Hl
o' Hln'
HR Hγ Hainv]"
).
{
iNext
.
iExists
(
o
+
1
)%
nat
,
n
'
%
nat
.
iFrame
.
rewrite
Nat2Z
.
inj_add
.
iFrame
.
iLeft
;
by
iFrame
.
}
iVsIntro
.
by
wp_if
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl Hr]"
).
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Hr]"
).
{
iNext
.
iExists
o'
,
n'
.
by
iFrame
.
}
iVsIntro
.
wp_if
.
by
iApply
(
"IH"
with
"Hγ HR"
).
Qed
.
...
...
Ghost User
@ghost
mentioned in issue
#26 (closed)
·
Aug 09, 2016
mentioned in issue
#26 (closed)
mentioned in issue #26
Toggle commit list
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment